批准立项年份	2006
通过验收年份	2011

国家级实验教学示范中心年度报告

(2022年1月1日——2022年12月31日)

示范中心名称: 化学国家级实验教学示范中心 (南开大学)

示范中心主任: 邱晓航

示范中心联系人及联系电话:徐娜/13920233553

所在学校名称:南开大学

所在学校联系人及联系电话、王青玲/18920828637

2023年3月29日填报

第一部分 年度报告

一、人才培养工作和成效

(一) 人才培养基本情况

2021 年度, 化学国家级实验教学示范中心(南开大学)(以下简称中心)共开出实验课程 37 门, 面向校内 23 个本科专业共计 4326人次, 25.8985 万人时数。

(二) 人才培养成效评价等

2022年是疫情防控形势严峻的一年。随着政策调整和形势变化,教学活动也不断调整和变化。面对前所未有的困难,中心坚持一直以"强化基础,注重综合,突出创新,培养能力,提高素质"为指导思想,以学生发展为目标,利用一切可以利用的时间、一切可利用的实验场所、一切能到岗的教师,多形式组织"基础化学实验"、"中级化学实验"、"综合化学实验"三大课程的教学活动,教学中注重对学生价值观引领,引导学生灵活应变、乐观向上、化困难为动力,为学生身心健康可持续发展打下基础。

在学院领导支持、学院教师的配合下,中心顺利完成教学任务,学生也获得了可喜的收获。2022年共211有名学生参与创新项目,8个项目入选"国家级大学生创新创业训练计划",39个项目入选"天津市大学生创新创业训练计划",50个项目入选南开大学本科生创新科研"百项工程"。在南开大学本科生"创新科研计划优秀项目"评选中化学学院创新项目共获得特等奖1项、一等奖2项、二等奖4项、

三等奖5项、优秀奖5项。

2022 年学生获奖情况

序号	获奖名称	获奖人	获奖时间
1	第三届全国大学生化学实验创新设计 大赛总决赛特等奖	梁驰予 张思翰卢晨昕	202208
2	第十七届"挑战杯"全国大学生课外学 术科技作品竞赛一等奖	王政林 韩东阳 谭芷 钰 吴可欣等	202203
3	第三届全国大学生化学实验创新设计 大赛华北赛区一等奖	梁驰予 张思翰 卢晨 昕	202207
4	2022 年天津市大学生知识产权创新创业发明与设计大赛 一等奖	李若璞 徐一泽 刘枭鹏 周坚	202205
5	2022 年天津市知识产权创新创业发明 与设计大赛 二等奖	李若璞 徐一泽 刘枭鹏 周坚	202205
6	2022"挑战杯"中国银行天津市大学 生创业计划竞赛金奖	佟泽栋 朱若郁 程炜 超 陈嘉宇 等	220207
7	第八届中国国际"互联网+"大学生创 新创业大赛天津市金奖	佟泽栋	202206
8	首届中国高校生态文明教育创新创意 大赛一等奖	佟泽栋 王安民 董煜	202210
9	第三届全国大学生化学实验创新设计 大赛华北赛区二等奖	毕昕悦 陆泽宇 柴心原	202207
10	第三届全国大学生化学实验创新设计 大赛华北赛区三等奖	陈皓 秦文卓 吴正昊	202207

在关注度高、影响力强的重要赛事上取得了可喜的成绩,梁驰予、 张思翰、卢晨昕同学凭借新创实验"二氧化硅光子晶体的超快速制备" 获得第三届全国大学生化学实验创新设计大赛总决赛特等奖;王政林、 韩东阳、谭芷钰、吴可欣等同学的作品《可控高效、绿色空气氧化偶 联反应的开发和应用》获得第十七届"挑战杯"全国大学生课外学术 科技作品竞赛一等奖。

二、人才队伍建设

(一) 队伍建设基本情况

实验中心实验教师队伍采取固定编制和聘用制相结合的用人机制。固定编制人员共 39 人,包括实验室主任 12 人(正高级职称 6 人);专职教师 5 人(高级职称 2 人,中级职称 3 人);实验技术人员 23 人,其中博士 7 人,硕士 15 人;高级实验师 9 人。

中心根据实验教学计划在学院内招聘实验任课教师,2022 年共106 名聘用制教师参与中心实验教学工作。

(二) 队伍建设的举措与取得的成绩等

2020年以来,实验中心持续加强基层组织建设、提升教师教学研究水平,采取了引进人才、教师培训常态化、鼓励教师参加教学竞赛、跨学院优化教学团队建设等手段进行队伍建设。几年来,教师队伍不断壮大,实验技术人员业务能力显著提升。

1. 加大力度吸引科研实力强、学术水平高、年富力强的青年教师加入教学队伍。国家杰出青年基金获得者袁明鉴研究员、海外高层次人才、国家优秀青年基金获得者牛志强研究员面向新能源科学与工程专业开设了化学电源基础实验和光伏器件基础实验,为培养四新人才注入活力。综合化学实验是培养学生综合运用化学知识和实验技能、提升学生解决化学及相关交叉学科科学问题能力的主要载体,在化学学院政策支持下,中心主动联系近年来引入的高端人才,定制个性化创新实验项目。2022年度,国家"四青"人才,天津市级青年学术带

头人王鸿研究员、朱春雷研究员、药化生国家重点实验室李昂工程师加入实验教师队伍, 开设了"聚集诱导发光光敏剂抗菌"、"聚

离子液体多孔膜制备及应用"和"纳米材料透射电子显微成像"三个新综合实验项目,体现了化学学科在前沿新材料的制备、表征和应用方面的贡献。学生在项目"原作者"指导下实验,近距离接触流式细胞仪、透射电子显微镜等大型仪器,显著提升了学生的参与欲望和探索兴趣。

2. 教学技能培训形式更加深入。自 2020 年起,中心将教师培训机制常态化,开展了实验教学技巧培训、自制仪器项目交流、实验安全等专题培训。2022 年度,中心将"接受培训"改为"任务式培训",教师们在公众号、科普活动、学科竞赛等平台展示自己,在实战中发现不足,促进了业务水平的提升

序号	公众号展示	完成人
1	拉曼光谱带你无损鉴定珠宝玉石	王京
2	奇妙的第三种晶体类型:错位螺旋阵列	王旭东
3	改善生活 辨识塑料	郭淼
4	焰色背后的秘密	陈红云
5	科普课堂 百变紫甘蓝与溶液的酸碱性	温志慧

3. 各类教学竞赛也是促进教师成长的有效途径。2022 年 3 月 1 日,中心组织全国大学生化学实验创新设计大赛经验交流会,李一峻教授、邱晓航教授详细解读了全国大学生化学实验创新设计大赛的宗旨和流程,鼓励教师们积极参赛,通过比赛的方式促进实验教学改革。经过校内遴选,三个作品入围华北赛区复赛,中心青年教师祁雪指导

的科普项目获得华北赛区二等奖,兼职教师王荷芳指导的新创项目获得华北赛区三等奖。

中心教师刘安安、马建功参加天津市青年教师教学竞赛获得三等 奖。竞赛从教学方案、教学内容、教学组织、教学语言与教态、教学 特色、教学反思等方面进行考查,对青年教师是极大的挑战,也有效 提升了青年教师对教学工作的理解。

4. 以课程思政建设为抓手,构建师生成长共同体,提升教师育人水平。

课程思政建设是近年来教育改革的重头戏,中心开展"以立德树人为目标,构建三全育人的实验教学体系"的教学研究工作。中心组织各课程修订教学大纲,将思政元素明确写进大纲,使课程教学活动"有法可依"。各课程组重新修订教案,参加"课程思政优秀典型观摩共公开课活动",使课程思政育人理念自然融入教师的日常工作中,其中"仪器分析化学实验"参加了教务处组织的"秋季学期课程思政公开课展示活动",受到听课教师的好评。

中心副主任刘阳教授发挥党员先锋示范作用,牢记习近平总书记嘱托,把"小我"融入"大我",科研、教学一肩挑,把科研中攻关克难,带领一批有热情、有能力、有担当的青年优秀教师把严谨的科学精神、活跃的科学思维、崭新的教学理念带入实验教学,实现了综合化学实验教学的更新迭代。

队伍建设取得明显成效。中心教师成为各类教学活动的主力军,

获得 2022 年度天津市教学成果特等奖两项,一等奖两项。中心实验技术系列教师主持校级教改项目,为全校各专业开设化学类通识课,为传播化学文化贡献自己的力量。

开设课程	主讲教师
生物质材料测定趣味实验	倪正民
生活中的化学实践	冯占恒 温志慧 殷仲墨 刘晓红
化学与社会	张瑞红
化学科普创作与传播	祁雪

三、教学改革与科学研究

(一) 教学改革立项、进展、完成等情况

中心积极组织实验教师参与课程建设和教学研究,申报教育教学改革项目。本年度在研教育教学改革项目 11 项(其中省部级以上教改项目 5 项),发表教学改革论文 15 篇。邱晓航主持的"以立德树人为目标,构建三全育人的实验教学体系"在南开大学 2020 年本科教学质量提升工程教学改革项目通过验收被评为优秀项目。

为推进"四新"建设,加强紧缺专业人才培养,中心根据教育部 教改精神,新开了面向"四新人才"培养的实验项目。新项目涉及新 型生物材料设计合成、药物载体制备表征、生物学基本实验及药物效 果评估、新能源电池设计、光伏器件设计、计算化学实验等内容,具 有明显的交叉学科特征。中心承担的自制仪器项目"唾液葡萄糖检测装置的研制"、"光声光谱仪"顺利结题。

2022 年度在研的省部级以上教改项目

序号	项目来源	课题名称	文号 (批准 号)		参加人员	起止时间	经费 (万 元)
1	天津市大中 小学"课程 思政"研究 专项课题	线混学程机改践上合与思融革 政合与思融革	JJSZKY2 0221115 4	邱晓 航	杨光明 朱 守非 程方 益 马建功 祁雪	2022. 7- 2023. 7	1
2	教育部产学 合作协同育 人项目	化学类实 验课程式 混合式 逆主 则	202343Н J0064	邱晓 航	刘阳 丁飞 冯占恒 温 志慧 祁雪	2022. 5- 2023. 4	2
3	教育部基础 学科拔尖学 生培养试验 计划 2.0 项 目	化拔的教验改新培探学尖"学———————————————————————————————————	2022203 8	马建功	程鹏, 邱晓 新, 雅, 雅, 本, 温志 恒, 温志	2022- 2024	10
4	教育部基础 学科技试验 生培养过2.0重 点项目	基MASE 投票 数研以学例于P- 化学性式— 化为	2022100 8	韩杰	邱晓航,李 一峻,尚贞 锋	2022. 12- 2024. 12	25
5	中国高等教育学会理科教育专业委	高等理科 拔尖人才 培养模式	21ZSLKJ YZD02	韩杰	贺峥杰	2021. 12-	0. 5

员会重点研	改革研		2023.	
究项目	究: 有机		12	
	化学实验			
	"N对			
	N"型教			
	学模式探			
	索			

(二) 科学研究等情况

本年度,中心教师主持的省部级以上科研项目 56 项,经费 5003.4 万元,发表科研论文 226 篇。

四、信息化建设、开放运行和示范辐射

(一) 信息化资源、平台建设, 人员信息化能力提升等情况

化学实验教学中心从 2000 年开始就建立了自己的网站 (http://cec.nankai.edu.cn),发布各类信息。此后不断增加网站的功能和内容,并坚持定期更新与维护,保证数据的有效性。2022 年信息化资源总量 7035.8Mb,信息化资源年度更新量 30.8 Mb,访问量为 23796 人次。

中心积极开展虚拟仿真实验项目的开发和应用,将复杂性强难度高的实验向学生开放,使实验教学更加生动形象。截至目前共开发了3项实验项目,分别是:电感耦合等离子体原子发射光谱仪的工作原理及生物样品的检测虚拟仿真实验、某化合物的核磁共振全分析实验、点击化学方法合成麦芽糖修饰的磁性纳米粒子的虚拟仿真实验,均已在南开大学虚拟仿真平台(https://ilab-

x.nankai.edu.cn/#/subject/81) 开放, 2022 年度, 累计点击量达 5145 次, 在疫情期间发挥了重要作用。

中心的微信公众号也保持活跃状态,中心通过公众号发布教学信息、科普活动、教研交流等。2022年共发布推文80篇,新增关注553人,截止2022年底关注用户1531人,文章总阅读量8708次。

(二) 开放运行、安全运行等情况

1.2021年中心实验室全面装修家具更新,教学实验环境得到改善。2022年度,中心教师逐渐完善实验室的后续整理,做了很多细致的工作。3月3日,实验中心组织全体教师走进实验室安全实训基地进行安全培训。实验室安全实训基地是南开大学设备处建立的实训基地,设有化学品存储展示、实验仪器与特种设备、危险废物处置、防护应急用品、事故案例警示教育、心肺复苏培训、虚拟仿真体验等多个区域,其中化学品存放、仪器使用等区域模拟实验室真实场景,设置"安全隐患"作为考试关卡,将培训与考试融为一体。在保证安全的条件下,对实验室功能区进行优化,保证实验教学顺利进行。

中心积极参与实验室安全研究工作,配合设备处面向全校做了"小事故问卷调查",对全国高校桶装试剂的调研、数据收集,为提升安全管理提供数据支持。中心在校内率先采用金属铁桶装低沸点、易燃试剂,为化学试剂安全管理提供了宝贵经验。

2. 更新教学理念,重塑实验内容。计算化学(computational

chemistry)是理论化学的一个分支,随着理论化学方法和计算机软硬件技术的迅猛发展,计算化学在化学科学的研究中发挥着越来越重要的作用。为满足新时代化学专业人才培养需求,化学实验教学中心开设了计算化学实验,包含8个实验项目。仪器分析实验的自主设计实验环节取得了良好的效果,学生充分发挥主观能动性,选择了很多贴近实际生活的趣味性课题,主动学习过程使学生更深入地理解和掌握了仪器原理及使用方法。两个学期共开发了27个自主设计实验课题:综合化学实验课程设计特色突出,入选2022年度虚拟仿真实验教学创新联盟实验教学应用示范课程。

- 3. 线上线下混合式教学为扩充实验内容、提高教学效率创造了条件。2022年度,中心各实验室加大力量进行线上资源建设。为了充分开展混合式教学积极组织应对疫情带来的困扰,丰富线上教学资源。大部分实验项目都配有操作示范视频,同时充实了测试题目库。配合研讨交流,多途径保证了实验教学的过程性评价。
- (三)对外交流合作、发挥示范引领、支持中西部高校实验教学 改革等情况

中心重视与国内高校之间的交流与合作, 充分发挥示范引领作用。

3月1日,组织了全国大学生化学实验创新设计大赛交流会;10月8日,组织了教育部虚拟教研室华北地区教学研讨会,邀请了北京大学李维红教授、中国农业大学杜凤沛教授、南开大学韩杰副教授做报告,研讨会为大学化学实验教学的教师搭建了有效的交流平台,吸

引了来自全国近5300名师生参加,产生了较为广泛的影响力。

中心发挥化学学科人才优势,组织丰富多彩的科普活动。2022年 1月17日,在习近平总书记视察南开大学三周年之际,基地组建大学生"星光科普团",取义"汇集南开群星力量,走向社会点亮处处星光",组织学生参与科普基地每年定期举办科技周开放日、送课进校园等活动,既有利于科普工作持续创新,又能增强大学生的专业自信和社会责任感。

响应国家"双减"工作要求,基地发挥学科优势,组织126名本科生开展社会实践,参与中小学课后服务工作。2022年,与南开大学附属小学、新华中学、途梦教育等多个机构开展合作,累计派出师生200余人次,为700余名中小学生授课70余节次,研发20余节课程,受到师生家长的一致好评。

通过线下和线上的方式,为宝坻区、山西繁峙、河北安平县等地的中小学生开展科普讲座和科普实验公益课堂。4月30日,邱晓航教授线上带福建沙县300名高中生"遇见化学";"惊奇化学之旅"暑期科探营活动,探究式的科学实验和动手实践活动使营员们沉浸于奇妙的化学世界中,流连忘返。

为满足国家重大战略需求,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域,帮助青少年了解化学、材料等物质科学类学科,基地邀请不同领域青年学术带头人担任主播,面向中学生推出系列科普讲座,2022年度共进行12场,受众两万余人。

五、示范中心大事记

(一)有关媒体对示范中心的重要评价,附相应文字和图片资料。

人民日报截图

(二) 省部级以上领导同志视察示范中心的图片及说明等。

无

(三) 其它对示范中心发展有重大影响的活动等。

无

六、示范中心存在的主要问题

实验技术系列队伍需要补充,实验改革思路需要进一步拓宽。实验教学评价体系依然不完善。

七、所在学校与学校上级主管部门的支持

- 1. 经费支持: 2022 年共投入经费 103.96 万元用于实验教学, 其中购置仪器设备 44.33 万元,59.63 万元用于实验室耗材及实验室 维修等。
- 2. 基础设施:负责实验中心各实验室装修和家具更新,负责基础设施的维修与环境维护工作,有力地保障了实验教学的正常进行。
- 3. 信息化建设: 学校建立了博达网站集群,将中心网站整体迁移至网站集群平台上,并负责日常硬件维护,为网站的安全运行提供了保障。

注意事项及说明:

- 1. 文中内容与后面示范中心数据相对应,必须客观真实,避免使用"国内领先"、"国际一流"等词。
 - 2. 文中介绍的成果必须有示范中心人员(含固定人员和流动人员)

的署名,且署名本校名称。

3. 年度报告的表格行数可据实调整,不设附件,请做好相关成果 支撑材料的存档工作。

第二部分 示范中心数据

(数据采集时间为 2022年1月1日至12月31日)

一、示范中心基本情况

示范中心	心名称	化学国	家级实验者) 学示	范中心	3(南开大学)		
所在学	交名称	南开大学						
主管部门	门名称	教育部	教育部					
示范中心门	门户网址	http:/	/cec. nank	ai.ed	u. cn			
二共由心。	光4四 4444	工油:	主刀油吹 页	4 <u>-</u>	邮政	300071		
示范中心i	干细心址	人/手!	市卫津路 94	+ 5	编码			
固定资	· 一情况							
建筑面积	5212 M ²	设备	3656. 07		ム粉	2021		
连巩凹积	SZIZ W	总值				2921		
经费投入	入情况							
主管部门年	度经费投		所在学校年度经费		조费	103.96 万		
入 (直属高标	•		投	入		元		

注: (1) 表中所有名称都必须填写全称。(2) 主管部门: 所在学校的上级主管部门, 可查询教育部发展规划司全国高等学校名单。

二、人才队伍基本情况

(一) 本年度固定人员情况

序号	姓名	性别	出生 年份	职称	职务	工作 性质	学位	备注
1	邱晓航	女	1968	正高级	主任	教学	博士	

2	刘阳	男	1984	正高级	副主任	教学	博士	博士生导师
3	韩杰	男	1972	副高级	副主任	教学	博士	
4	丁飞	男	1979	副高级	副主任	技术	硕士	
5	楼兰兰	女	1981	副高级	副主任	教学	博士	
6	李一峻	男	1964	正高级	其它	教学	博士	博士生导师
7	尚贞锋	男	1968	正高级	其它	教学	博士	
8	邱平	男	1965	副高级	其它	教学	博士	
9	郭东升	男	1979	正高级	其它	管理	博士	博士生导师
10	李国然	男	1977	正高级	其它	教学	博士	博士生导师
11	章应辉	男	1970	副高级	其它	教学	博士	
12	谢召军	男	1982	副高级	其它	教学	博士	
13	李姝	女	1982	中级	其它	教学	博士	
14	任红霞	女	1976	中级		教学	博士	
15	朱宝林	女	1978	副高级		教学	博士	
16	李富生	男	1963	中级		教学	硕士	
17	刘乃汇	女	1973	中级		教学	博士	
18	徐娜	女	1981	副高级		技术	博士	
19	郭淼	女	1983	中级		技术	博士	
20	南晶	男	1976	副高级		技术	博士	
21	欧阳砥	女	1969	副高级		技术	博士	
22	张瑞红	女	1981	副高级		技术	博士	
23	王旭东	男	1972	副高级		技术	博士	
24	王彦美	女	1972	副高级		技术	硕士	
25	程春英	女	1967	副高级		技术	硕士	
26	李伯平	男	1964	副高级		技术	硕士	
27	樊玲	女	1982	中级		技术	硕士	
28	张业云	女	1988	中级		技术	硕士	
29	冯占恒	男	1982	中级		技术	硕士	
30	李琰	女	1981	中级		技术	硕士	
31	王京	女	1980	中级		技术	硕士	
32	武云丽	女	1981	中级		技术	硕士	
33	李芳	女	1982	中级		技术	硕士	
34	温志慧	女	1990	中级		技术	硕士	
35	祁雪	女	1991	中级		技术	硕士	
36	陈红云	女	1990	中级		技术	硕士	
37	刘晓红	女	1988	中级		技术	博士	
38	倪正民	男	1991	中级		技术	硕士	
39	殷仲墨	女	1991	初级		技术	硕士	

注: (1) 固定人员: 指高等学校聘用的聘期 2 年以上的全职人员,包括教学、技术和管理人员。(2) 示范中心职务:示范中心主任、副主任。(3) 工作

性质: 教学、技术、管理、其他。具有多种性质的,选填其中主要工作性质即可。 (4) 学位: 博士、硕士、学士、其他,一般以学位证书为准。(5) 备注: 是否院士、博士生导师、杰出青年基金获得者、长江学者等,获得时间。

(二) 本年度流动人员情况

序号	姓名	性别	出 生 年份	职称	国别	工作单位	类型	工作期限
1	黄唯平	男	1958	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
2	李立存	男	1965	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
3	王一菁	女	1967	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
4	张守民	男	1964	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
5	马建功	男	1982	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
6	顾文	男	1968	副高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
7	王庆伦	男	1976	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
8	王淑荣	女	1970	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
9	田金磊	男	1975	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
10	马越	女	1979	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
11	王蔚	男	1979	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
12	徐大振	男	1981	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
13	贺峥杰	男	1966	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
14	范志金	男	1968	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
15	李鑫	男	1980	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
16	张新歌	女	1973	正高 级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31

17	关英	女	1971	副高	中国	南开大	校内兼职	2022-01-01 至
				级副章		学士工人	人员	2022-12-31
18	李华斌	男	1981	副高	中国	南开大	校内兼职	2022-01-01 至
				级副官		学	人员	2022-12-31
19	李玉新	女	1975	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
				<i>3</i> X		 南开大	校内兼职	2022-12-31 2022-01-01 至
20	张娴	女	1982	中级	中国	学	人员	$2022 - 01 - 01 \pm 2022 - 12 - 31$
				副高		 南开大	校内兼职	2022-01-01 至
21	李建峰	男	1980	级	中国	学	人员	2022 - 01 - 01 = 2022 - 12 - 31
				副高		南开大	校内兼职	2022-01-01 至
22	马如江	男	1977	级	中国	学	人员	$2022 - 01 - 01 \pm 2022 - 12 - 31$
				副高		南开大	校内兼职	2022-01-01 至
23	许寒	女	1980	级	中国	学	人员	2022-12-31
				副高	, , , -	 南开大	校内兼职	2022-01-01 至
24	刘玉秀	女	1972	级	中国	学	人员	2022-12-31
	- \ -			副高		南开大	校内兼职	2022-01-01 至
25	王宝雷	男	1976	级	中国	学	人员	2022-12-31
	=	_		正高	, ,	南开大	校内兼职	2022-01-01 至
26	于奡	男	1966	级	中国	学	人员	2022-12-31
	J 77/ //-	,		副高	1 1	南开大	校内兼职	2022-01-01 至
27	牛聪伟	女	1976	级	中国	学	人员	2022-12-31
00	工士户	,	1070	副高	나되	南开大	校内兼职	2022-01-01 至
28	王志宏	女	1973	级	中国	学	人员	2022-12-31
90	4 左 人	男	1005	副高	中日	南开大	校内兼职	2022-01-01 至
29	朱有全	为	1965	级	中国	学	人员	2022-12-31
30	郭先芝	女	1965	副高	中国	南开大	校内兼职	2022-01-01 至
30	孙九乙	又	1900	级	十四	学	人员	2022-12-31
31	傅国旗	男	1966	副高	中国	南开大	校内兼职	2022-01-01 至
31	符四旗	カ	1900	级	丁巴	学	人员	2022-12-31
32	柳凌艳	女	1978	副高	中国	南开大	校内兼职	2022-01-01 至
02	7/11/1/2/16		1310	级	1 🖹	学	人员	2022-12-31
33	李庆山	男	1970	副高	中国	南开大	校内兼职	2022-01-01 至
00	7 // 1	74	1310	级	1 🗵	学	人员	2022-12-31
34	徐凤波	男	1966	正高	中国	南开大	校内兼职	2022-01-01 至
01	M. V. AMY	//	1000	级	1 1	学	人员	2022-12-31
35	赵卫光	男	1971	正高	中国	南开大	校内兼职	2022-01-01 至
	/ \/			级	1 1	学	人员	2022-12-31
36	王贵昌	男	1963	正高	中国	南开大	校内兼职	2022-01-01 至
	, , ,		-	级工士		学	人员	2022-12-31
37	许秀芳	女	1974	正高	中国	南开大	校内兼职	2022-01-01 至
				级		学	人员	2022-12-31

38	陈湧	男	1972	正高级	中国	南开大学	校内兼职人员	2022-01-01 至 2022-12-31
				副高		 南开大	校内兼职	2022-01-01 至
39	李悦	男	1984	级	中国	学	人员	2022 - 01 - 01 = 2022 - 12 - 31
				正高		南开大	校内兼职	2022-01-01 至
40	阎虎生	男	1959	级	中国	学	人员	2022-12-31
				正高		 南开大	校内兼职	2022-01-01 至
41	陈朗星	男	1965	级	中国	学	人员	2022-12-31
	\.1 +-	,		副高	1 11	南开大	校内兼职	2022-01-01 至
42	刘玉萍	女	1976	级	中国	学	人员	2022-12-31
4.0	+ > 1-	,	1051	副高	.L. 🗖	南开大	校内兼职	2022-01-01 至
43	李永红	女	1971	级	中国	学	人员	2022-12-31
4.4	工		1074	正高	中国	南开大	校内兼职	2022-01-01 至
44	王荷芳	女	1974	级	円国	学	人员	2022-12-31
45	夏炎	女	1975	正高	中国	南开大	校内兼职	2022-01-01 至
40	友 火	又	1975	级	丁四	学	人员	2022-12-31
46	王影	女	1979	副高	中国	南开大	校内兼职	2022-01-01 至
40	工 尔	У	1313	级	7 14	学	人员	2022-12-31
47	梁静	女	1977	副高	中国	南开大	校内兼职	2022-01-01 至
11	\r 11		1311	级	1 1	学	人员	2022-12-31
48	王志刚	男	1982	副高	中国	南开大	校内兼职	2022-01-01 至
	7.0111	74	1002	级	1 1	学	人员	2022-12-31
49	刘安安	女	1986	中级	中国	南开大	校内兼职	2022-01-01 至
	, , , , , ,			, , , -	' -	学	人员	2022-12-31
50	李文友	男	1966	正高	中国	南开大	校内兼职	2022-01-01 至
	, , , , ,	,		级		学	人员	2022-12-31
51	孔德明	男	1975	正高	中国	南开大	校内兼职	2022-01-01 至
				级		学	人员	2022-12-31
52	唐安娜	女	1975	副高	中国	南开大	校内兼职	2022-01-01 至
				级		学工工	人员	2022-12-31
53	张晓光	男	1972	中级	中国	南开大	校内兼职	2022-01-01 至
				丁古		学生工工	人员	2022-12-31
54	石可瑜	女	1970	正高 级	中国	南开大学	校内兼职	2022-01-01 至 2022-12-31
				,			人员	
55	林深	男	1968	副高级	中国	南开大学	校内兼职 人员	2022-01-01 至 2022-12-31
				副高		 南开大	校内兼职	2022-12-31 2022-01-01 至
56	张育英	女	1975	級	中国	学	人员	$2022 - 01 - 01 \pm 2022 - 12 - 31$
				副高		 南开大	校内兼职	2022-01-01 至
57	何尚锦	男	1966	级	中国	学	人员	$2022 \text{ or or } \pm $
				副高		南开大	校内兼职	2022-01-01 至
58	陈文彬	男	1972	级	中国	学	人员	$2022 - 01 - 01 \pm 2022 - 12 - 31$
				*//	<u> </u>	1	/ 5 2%	2022 12 01

	I				ı	1 1	1) 1 1/	
59	常泽	男	1984	正高 级	中国	南开大学	校内兼职 人员	2022-01-01 至 2022-12-31
				副高		南开大	校内兼职	2022-01-01 至
60	魏进平	男	1965	级	中国	学	人员	2022-12-31
0.1	エ ソ #	,	100		.1.1=	南开大	校内兼职	2022-01-01 至
61	于美慧	女	1987	中级	中国	学	人员	2022-12-31
CO	4 4 宏	田	1000	副高	中日	南开大	校内兼职	2022-01-01 至
62	武光军	男	1982	级	中国	学	人员	2022-12-31
63	戴卫理	男	1983	副高	中国	南开大	校内兼职	2022-01-01 至
00		カ	1900	级	丁巴	学	人员	2022-12-31
64	尹君	女	1991	中级	中国	南开大	校内兼职	2022-01-01 至
01	7 /10		1331	1 1/1	1 🖹	学	人员	2022-12-31
65	姚兆全	男	1988	中级	中国	南开大	校内兼职	2022-01-01 至
	//u/u x	<i>></i> √	1000		1 🛱	学	人员	2022-12-31
66	杨化滨	男	1970	正高	中国	南开大	校内兼职	2022-01-01 至
	W IUV	74	1310	级	1 1	学	人员	2022-12-31
67	李朝阳	男	1984	副高	中国	南开大	校内兼职	2022-01-01 至
01	7 7/1/11	<i>7</i> √	1301	级	1 🖹	学	人员	2022-12-31
68	刘剑	男	1968	副高	中国	南开大	校内兼职	2022-01-01 至
00	V1 121	<i>7</i> √	1300	级	1 14	学	人员	2022-12-31
69	刘胜	男	1982	副高	中国	南开大	校内兼职	2022-01-01 至
0.5	\1\1\I	<i>7</i> √	1302	级	1 14	学	人员	2022-12-31
70	翟欣昀	女	1988	中级	中国	南开大	校内兼职	2022-01-01 至
10	生从的	Х	1300	1 4	1 1	学	人员	2022-12-31
71	王丹红	女	1973	副高	中国	南开大	校内兼职	2022-01-01 至
11	エハユ	Х	1313	级	1 1	学	人员	2022-12-31
72	曹建胜	男	1969	中级	中国	南开大	校内兼职	2022-01-01 至
12	日文江	<i>7</i> √	1303	1 4	1 1	学	人员	2022-12-31
73	袁忠勇	男	1968	正高	中国	南开大	校内兼职	2022-01-01 至
13	衣心力	N	1300	级	1 14	学	人员	2022-12-31
74	张翠	女	1978	副高	中国	南开大	校内兼职	2022-01-01 至
14	W 4	У	1310	级	1 14	学	人员	2022-12-31
75	李柏延	男	1980	正高	中国	南开大	校内兼职	2022-01-01 至
10	于相处	カ	1300	级	1 14	学	人员	2022-12-31
76	陈莉	女	1969	副高	中国	南开大	校内兼职	2022-01-01 至
10	沙利	乂	1909	级	丁巴	学	人员	2022-12-31
77	王文虎	男	1963	副高	中国	南开大	校内兼职	2022-01-01 至
' '	- 一人 ル	<i>71</i>	1300	级	1 🖽	学	人员	2022-12-31
78	胡方中	男	1969	副高	中国	南开大	校内兼职	2022-01-01 至
10	917/	24	1303	级	1 141	学	人员	2022-12-31
79	朱义州	男	1973	副高	中国	南开大	校内兼职	2022-01-01 至
13	ハンマノロ	<i>7</i> √	1010	级	1 円	学	人员	2022-12-31

				- -		I	1). 1)/- ਜਮ	
80	伍国琳	女	1976	正高	中国	南开大	校内兼职	2022-01-01 至
				级副章		学士工人	人员	2022-12-31
81	张珍坤	男	1978	副高	中国	南开大	校内兼职	2022-01-01 至
				级副章		学士工人	人员	2022-12-31
82	杨新林	男	1970	副高	中国	南开大	校内兼职	2022-01-01 至
				级副主		学工工	人员	2022-12-31
83	李红时	男	1992	副高	中国	南开大	校内兼职	2022-01-01 至
				级工主		学士亚	人员	2022-12-31
84	唐祥海	男	1968	正高	中国	南开大	校内兼职	2022-01-01 至
				级		学士亚	人员	2022-12-31
85	陈鹏	男	1994	中级	中国	南开大	校内兼职	2022-01-01 至
				— -		学	人员	2022-12-31
86	牛志强	男	1983	正高	中国	南开大	校内兼职	2022-01-01 至
	, , ,	- 1		级	, , ,	学	人员	2022-12-31
87	袁明鉴	男	1982	正高	中国	南开大	校内兼职	2022-01-01 至
	1/2 / 1			级		学	人员	2022-12-31
88	李昂	男	1987	中级	中国	南开大	校内兼职	2022-01-01 至
- 00	7 - 1.	<i>></i> √	1001	1 4/1	1 🖂	学	人员	2022-12-31
89	王鸿	男	1982	正高	中国	南开大	校内兼职	2022-01-01 至
	777	74	1302	级	1 🗵	学	人员	2022-12-31
90	朱春雷	男	1985	正高	中国	南开大	校内兼职	2022-01-01 至
30	八口田田	74	1300	级	1 [4]	学	人员	2022-12-31
91	胡同亮	男	1976	正高	中国	南开大	校内兼职	2022-01-01 至
<i>J</i> 1	例刊元	<i>7</i> √	1310	级	1 1	学	人员	2022-12-31
92	马延风	女	1969	副高	中国	南开大	校内兼职	2022-01-01 至
92	マだ八	У	1909	级	7 12	学	人员	2022-12-31
93	陈莉	女	1968	副高	中国	南开大	校内兼职	2022-01-01 至
93	你和	又	1900	级	十四	学	人员	2022-12-31
0.4	陈文彬	男	1972	副高	中国	南开大	校内兼职	2022-01-01 至
94		カ	1972	级	中国	学	人员	2022-12-31
OF	木沪	男	1000	副高	中国	南开大	校内兼职	2022-01-01 至
95	李滨	为	1980	级	十四	学	人员	2022-12-31
0.6	如小千	田	1066	正高	中国	南开大	校内兼职	2022-01-01 至
96	邹小毛	男	1966	级	十四	学	人员	2022-12-31
07	田工业	田	1071	正高	H FT	南开大	校内兼职	2022-01-01 至
97	周正洪	男	1971	级	中国	学	人员	2022-12-31
00	太山 #	,	1070	副高	나 드	南开大	校内兼职	2022-01-01 至
98	李瑞芳	女	1972	级	中国	学	人员	2022-12-31
00	141 上山	H	1070	正高	十二	南开大	校内兼职	2022-01-01 至
99	陶占良	男	1972	级	中国	学	人员	2022-12-31
100	コレルー・レ	н	1005	正高	上口	南开大	校内兼职	2022-01-01 至
100	张衡益	男	1965	级	中国	学	人员	2022-12-31
	1				22	1		

101	郑文君	男	1960	正高 级	中国	南开大学	校内兼职 人员	2022-01-01 至 2022-12-31
102	段文勇	男	1968	副高级	中国	 南开大 学	校内兼职人员	2022-01-01 至 2022-12-31
103	陈兰	女	1965	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
104	张晓光	男	1972	中级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
105	关庆鑫	男	1981	副高级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31
106	沈荣欣	男	1972	中级	中国	南开大 学	校内兼职 人员	2022-01-01 至 2022-12-31

注: (1) 流动人员包括校内兼职人员、行业企业人员、海内外合作教学人员等。 (2) 工作期限: 在示范中心工作的协议起止时间。

(三) 本年度教学指导委员会人员情况

序号	姓名	性别	出生 年份	职称	职务	国别	工作单位	类型	参会次数
1	徐家宁	男	1958	教授	主任委员	中国	吉林大学	外校专家	1
2	张树永	男	1965	教授	委员	中国	山东大学	外校专家	1
3	杨屹	女	1964	教授	委员	中国	北京化工 大学	外校专家	1
4	王彦广	男	1964	教授	委员	中国	浙江大学	外校专家	1
5	王佰全	男	1968	教授	委员	中国	南开大学	校内专家	1
6	李一峻	男	1964	教授	委员	中国	南开大学	校内专家	1

注: (1) 教学指导委员会类型包括校内专家、外校专家、企业专家和外籍 专家。(2) 职务:包括主任委员和委员两类。(3) 参会次数:年度内参加教学 指导委员会会议的次数。

三、人才培养情况

(一) 示范中心实验教学面向所在学校专业及学生情况

序号	面向的专业	1 141.	1 1 1 1 1 1 1	
丹	专业名称	年级	人数	人时数

1	材料化学	2021	40	2720
2	材料化学	2020	36	2448
3	材料化学,材料物理,西班 牙语	2021	28	1960
4	材料物理	2020	39	2652
5	材料物理,材料化学	2020	52	3536
6	分子科学与工程	2021	65	4550
7	分子科学与工程	2020	38	3648
8	分子科学与工程	2021	40	2800
9	分子科学与工程	2020	39	2730
10	分子科学与工程	2020	59	3776
11	分子科学与工程	2020	43	3010
12	分子科学与工程	2021	62	4340
13	化学	2020	45	3150
14	化学	2020	43	3010
15	化学	2019	52	3640
16	化学	2019	35	2450
17	化学	2020	26	1664
18	化学	2019	81	2916
19	化学(伯苓)	2021	61	4270
20	化学(伯苓)	2022	64	4480
21	化学(伯苓)	2021	54	3780
22	化学(伯苓)	2020	46	3680
23	化学(伯苓)	2020	54	3780
24	化学(伯苓)	2021	51	3570
25	化学(伯苓)	2021	51	3570
26	化学(伯苓)	2020	54	1944
27	化学(伯苓)	2020	53	3392
28	化学, 化学生物学	2021	119	8330
29	化学, 化学生物学	2020	156	10920
30	化学、分子科学与工程、新 能源材料与工程、理科实验 班类、化学生物学	2022	278	19460
31	化学、新能源	2020	60	3840
32	化学、应用化学	2019	91	3640
33	化学、应用化学	2020	161	12880
34	化学、应化、分子科学与工 程	2019	16	512
35	化学、应化、工业工程、国 际经济与贸易	2019	4	144
36	化学、应用化学、新能源	2021	202	7272

37	化学生物学	2019	32	2240
38	化学生物学	2020	32	2048
39	化学生物学、新能源特色班	2020	53	3710
40	环境工程,环境科学,资源	2020	17	884
40	循环科学与工程			
41	理科试验班类	2021	133	9310
42	理科试验班类	2022	91	4368
	理科试验班类,材料类,药	2019	136	9520
49	学类, 药学, 环境科学与工			
43	程类,环境科学,环境工			
	程,资源循环科学与工程			
4.4	理科试验班类, 国际经济与	2020	8	560
44	贸易			
45	理科试验班类	2021	67	4556
46	理科试验班类,材料化学	2020	74	5328
	理科试验班类,药学,环境	2022	175	11900
47	科学,材料类,环境科学与			
	工程类			
40	临床医学,口腔医学,眼视	2022	183	5856
48	光医学			
40	临床医学,口腔医学,眼视	2021	260	8320
49	光医学			
50	临床医学	2020	99	3465
51	生物	2021	120	5760
52	生物(伯苓)	2022	59	2832
53	新能源材料与工程	2020	32	2240
54	新能源材料与工程	2021	25	1750
55	新能源材料与工程	2019	18	1152
56	新能源材料与工程	2019	17	1088
	信息安全,临床医学,自动	2020	7	224
57	化, 行政管理			
58	研究生	2021	59	1888
59	药学	2020	9	324
60	药学	2019	48	3360
61	应用化学	2020	57	3990
62	应用化学	2019	60	4200
63	应用化学	2020	57	3648

注:面向的本校专业:实验教学内容列入专业人才培养方案的专业。

(二) 实验教学资源情况

实验项目资源总数	370 个
年度开设实验项目数	144 个
年度独立设课的实验课程	37门
实验教材总数	10 种
年度新增实验教材	0 种

注: (1) 实验项目: 有实验讲义和既往学生实验报告的实验项目。 (2) 实验教材: 由中心固定人员担任主编、正式出版的实验教材。 (3) 实验课程: 在专业培养方案中独立设置学分的实验课程。

(三) 学生获奖情况

学生获奖人数	3人
学生发表论文数	1 篇
学生获得专利数	0 项

注: (1) 学生获奖: 指导教师必须是中心固定人员,获奖项目必须是相关项目的全国总决赛以上项目。(2) 学生发表论文: 必须是在正规出版物上发表,通讯作者或指导老师为中心固定人员。(3) 学生获得专利: 为已批准专利,中心固定人员为专利共同持有人。

四、教学改革与科学研 70 究情况

(一) 承担教学改革任务及经费

序号	项目/ 课题名称	文号	负责人	参加人 员	起止时间	经费(万元)	类别
1	天津市大中小学 "课程思政"研究 专项课题/线上线下 混合式教学与 课程 思政有机融合的改 革与实践	JJSZKY20 2211154	邱晓航	杨朱#,程 明, 非 并, 是 动, 都 雪	202207- 202307	1	b
2	教育部产学合作协 同育人项目/化学类 实验课程的混合式 教学主题培训	202343НJ 0064	邱晓航	刘阳,丁 飞,冯 恒,温志 慧,祁雪	202205- 202304	2	а

3	"教育部基础学科拔 尖学生培养试验计 划 2.0/化学专业拔 尖学生的"理论教 学-实验	20222038	马建功	"程晓方朱冯温慧 #,,,益宝占志	202212- 202412	10	b
4	教育部基础学科拔 尖学生培养试验计 划 2. 0 重点项目/基 于 P-MASE 的化学拔 尖学生研究性教学 模式研究——以基 础化学实验为例	20221008	韩杰	邱晓 航, 李 一	202212- 202412	25	a
5	中国高等教育专业目/高等型点研究项目/启等理科拔尖人才完革研究项目/培养模式改革研究:有机化学实验"N对N"型教学模式探索	21ZSLKJY ZD02	韩杰	贺峥杰	202112- 202312	0. 5	а

注:此表填写省部级以上教学改革项目/课题。(1)项目/课题名称:项目管理部门下达的有正式文号的最小一级子课题名称。(2)文号:项目管理部门下达文件的文号。(3)负责人:必须是示范中心人员(含固定人员和流动人员)。(4)参加人员:所有参加人员,其中研究生、博士后名字后标注*,非本中心人员名字后标注#。(5)经费:指示范中心本年度实际到账的研究经费。(6)类别:分为 a、b 两类, a 类课题指以示范中心人员为第一负责人的课题; b 类课题指本示范中心协同其他单位研究的课题。

(二) 研究成果

1. 专利情况

序号	专利名称	专利授权号	获准 国别	完成人	类型	类别
1	Process method for producing pesticide by using carbon dioxide	US11,453,6 38B2	美国	马建功, 王志强, 程鹏	发明专利	合完 一一一
2	(1,1-二氰基-4- 氧)-己基-3-氧化	CN11381699 4B	中国	徐大振	发明专利	独立 完成

	-1 . It Init	T	I	T	T	
	吲哚亚膦酸二乙酯					
	及其衍生物的合成					
	方法					
	含有β-氰基膦酸	CN11381699	中国	徐大振	发明专利	独立
3	酯类衍生物的合成	3B				完成
	方法					
	1-苯硫基-2-芳香	CN11381681	中国	徐大振	发明专利	独立
4	酚类化合物的合成	5B		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		完成
	方法					, , , ,
	<u>芳</u> 硫基萘酚、萘胺	CN11381688	中国	徐大振	发明专利	独立
	类化合物以及苯硫	4B		N. J. VIL	V 14 411	完成
5	基吲哚类化合物的	110				74 MA
	全成方法					
	一种碳负载的高分	ZL20191069	中国	王一菁,	发明专利	合作
			丁酉	-	久切々州	1
	散过渡金属催化剂	2019. X		袁华堂,		完成
C	的制备方法			焦丽芳,		—第
6				黄一可,		一人
				张秋雨,		
				臧磊,邵		
	A) A) A) A) A		,	化旭	No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
	一种竹节状碳纳米	ZL20201119	中国	王一菁,	发明专利	合作
	管贯通的蛋黄-蛋	919. 0		郭慧男,		完成
7	壳结构碳包覆过渡			李伟勤,		一第
	金属催化剂的制备			陈楷,岳		一人
	方法			梦圆		
	硅稠环萘并吡喃光	ZL20211136	中国	韩杰,	发明专利	合作
0	致变色化合物及其	7289. 7		许铮,		完成
8	制备方法于及应用			涂希,		一第
				赵斌		一人
	双稠环萘并吡喃光	ZL20191066	中国	韩杰,	发明专利	合作
	致变色化合物及其	0590. 3		席志强,		完成
9	制备方法			孙娟娟,		一第
	1 H /V 14			孟继本,		一人
				型		
		ZL20211078	中国	韩杰,	发明专利	合作
1	光致变色化合物及	5968X		^和 然, 杨俊生,	1/2 71 2 TV	完成
0	其制备方法及应用	00001		他 医 生 , 杜 思 毅		- 九
U	大門面刀石区四月			心秋		— _泉 一人
	目右尖心似似的女	71 90101119	中日	古士士	发明专利	
4	具有发光性能的苯	ZL20181113	中国	韩杰	久쀳专剂	独立
1	并[b] 噻吩类液晶	5077. 4				完成
1	化合物及其制备方					
	法			-1. to-	ils and a second	,
1	多肽交联的蛋白质	JP7011349	日本	张拥军,	发明专利	合作
2	分子印迹聚合物及			许荣,关		完成

	其制备方法和应用			英		一其
) ((他
	含氮杂环结构的噁 唑啉类衍生物及其	ZL 2019109032	中国	汪清民, 陈仕林,	发明专利	合作 完成
1	制备和在防治植食	14. 2		刘玉秀,		一其
3	性螨中的应用			张钰,王		他
				兹稳,李		
			1 –	永强	. N. 14 1 21	
	含磺酸酯结构的噁	ZL	中国	汪清民,	发明专利	合作
1	唑啉类衍生物及其 制备和在防治植食	2019109033 59. 2		陈仕林, 刘玉秀,		完成 —其
4	性螨中的应用	00. 2		张钰,王		他
	(= (((((((((((((((((((兹稳,李		, _
				永强		
	2,4-二苯基-4,5-	ZL	中国	汪清民,	发明专利	合作
1	二氢噁唑啉类化合 物的合成新方法	2019109033 58. 8		王兹稳, 张钰,陈		完成 —其
5	初 F) '	50.0				他
J				玉秀,李		10
				永强		
	一类京尼平内酰胺	ZL	中国	汪清民,	发明专利	合作
1	衍生物及其制备和	2018108407		夏青,刘		完成
1 6	应用	42. 3		玉秀,王 兹稳,宋		一 其 他
O				红健,李		10
				永强		
	一类含有酯、肟和	ZL	中国	汪清民,	发明专利	合作
1	腺片段的京尼平衍	2018108407		夏青,刘		完成
$\begin{vmatrix} 1 \\ 7 \end{vmatrix}$	生物及其制备和应 用	43.8		玉秀,王 兹稳,宋		一 其 他
•	/11			红健,李		167
				永强		
	色胺酮衍生物在治	ZL	中国	汪清民,	发明专利	合作
1	疗植物病毒病菌病	2019113445		郝亚男,		完成
1 8	中的应用	54. 2		刘玉秀, 王兹稳,		一 其 他
0				工		157
				李永强		
	一种含黄嘌呤-8-	ZL20211106	中国	王宝雷	发明专利	独立
1	基的(E)-丙烯酸衍	6326. 0				完成
9	生物及其制备方法					
2	和应用 8-芳氧基烷氧基取	ZL20211076	中国	王宝雷	发明专利	独立
0	代黄嘌呤衍生物及	0621. X			<u> </u>	完成
		1	I	I	l	> - > 4

	其制备方法和应用					
2 1	一种含噻吩基吡啶 和硫基团的乙酰芳 胺衍生物及其制备 方法和用途	ZL20211051 5114. X	中国	王宝雷	发明专利	独立完成
2 2	侧链末端含杂环的 三尖杉酯类生物碱 及其制备和应用	ZL20181112 7602. 8	中国	陈莉,张 悦,徐 建,赵莹	发明专利	合作 完成 一 第 一 人
2 3	一种蝶啶酮类化合物及其制备方法和 应用	CN11320098 5B	田	李王董房刘陈举城学客月, , , , , , , , , , , , , , , , , , ,	发明专利	独立完成
2 4	授一种 4-氨基-5- 嘧啶甲酰胺类化合 物及其制备方法和 应用	CN11320092 4B	中国	李夏天静 天皇, 新 新 派 教 新 系 是 , 那 任 是 , 那 任 是 , , 和 任 任 。 日 。 日 。 日 。 日 。 日 。 日 。 日 。 日 。 日	发明专利	独立完成
2 5	一种合成乙基肼二盐酸盐的新方法	CN11262493 8	甲	陈凤庆冠红娇春辉, 4 李祝王李泽	发明专利	合完 一二
2 6	一种 Ag2Te 量子点 尺寸调控的方法	CN11356388 7B	中国	刘安安	发明专利	合作 完 人
2 7	一种制备尺寸可控 的有机相硒化银量 子点的方法	CN11073476 7B	中国	刘安安	发明专利	合作 完成 一其 他
2 8	一种木质素基氢键 有机骨架纳米材料 及其制备方法、应 用	ZL20211117 0483. 6	中国	孔李被, 李被, 李娜,朱 莉娜	发明专利	合作 完成 一第 一人
2 9	一种分层级异孔共 价有机骨架材料及	ZL20201148 4558. 3	中国	孔德明, 李薇,唐	发明专利	合作 完成

	其制备方法和应用			安娜,王晓涵,陈燕,王汭		一第一人
3 0	一种有机荧光材料、合成方法及其 应用	ZL20211012 8972. 9	中国	唐娜德陈李王涵汭安;明燕薇晓;	发明专利	合作 完第 一人
3 1	一类磺酰脲类化合 物及其制备方法和 在制备除草剂方面 的用途	ZL20191096 0689. 5	中国	王建国,李永红	发明专利	合作 完成 一第 二人
3 2	尿素酶解法批量合 成碱式碳酸盐和金 属氧化物纳米管	ZL20211069 6928. 8	中国	王荷芳, 王婷,王 正午,朱 义州	发明专利	合作 完成 一第 一人
3	用于锂金属二次电 池的单离子导电聚 合物复合材料的制 备方法	ZL20201136 8789. 8	中国	杨化滨 单新媛	发明专利	合作 完成 一 第 一 人
3 4	用于锂离子电池硅 基负极的聚亚胺导 电粘结剂	ZL20191052 0570. 6	中国	杨化滨 高世伦 潘宜漾	发明专利	合作 完成 一 一 人
3 5	一种碳基单原子电 催化剂的制备方法	ZL20211103 94053. 6	中国	周一会圆进郭崔薛魏	发明专利	合作 完此 他
3 6	一种利用高压均质 制备共价有机框架 材料的方法	ZL20211025 7296. 5	中国	李柏延, 刘雄利	发明专利	合作 完成 一 一 人
3 7	一种高稳定强碱性 多孔离子交换材料 的制备方法	CN20211076 0618. 8	中国	李柏延, 张志远	发明专利	合作 完成 一第 一人
3 8	一种利用高压均质 制备金属有机框架 材料的方法	ZL20211074 6128. 2	中国	李柏延, 刘雄利	发明专利	合作 完成 一第 一人

	可说是苏州江州	71.00011000	中日	케IKH YH	光阳 七五	<i>△ 11-</i>
0	可递送药物活性;	ZL20211002	中国	刘阳,郑	发明专利	合作
3	物质的近红外激发	6726. 2		雅丹		完成
9	复合光敏纳米颗粒					—第
	的制备方法及应用		1 1	\. Hu \	JN 88 J. 73	一人
	可将组合药物按比	ZL20201130	中国	刘阳,郭	发明专利	合作
4	例递送至肿瘤组织	1944. 4		东升,张		完成
0	的大环两亲自组装			展展,岳		一第
	纳米颗粒的制备方			宇昕		一人
	法和应用					
	一种可以安全使用	ZL20222116	中国	李伯平,	发明专利	合作
4	玻璃纤维雾化芯烟	3447. 7		王淑芳,		完成
1	弹			昝一楠		一第
						一人
	一种可更换烟油仓	ZL20222117	中国	李伯平,	发明专利	合作
4	的组合式烟弹	5783. 3		王淑芳,		完成
2				昝一楠		一第
						一人
	一种自支撑的共价	ZL20221150	中国	王鸿,胡	发明专利	合作
4	交联功能聚电解质	6644. 9		颖一		完成
3	多孔膜及其制备方					一第
	法和应用					一人
	一种功能聚离子液	ZL20221101	中国	王鸿,王	发明专利	合作
4	体水下黏接剂及制	6226. 1		彬敏		完成
4	备方法和应用					—第
	,					一人
	基于饱和脂肪酸和	ZL20201099	中国	朱春雷,	发明专利	合作
4	二价铜盐螯合物的	0279.8	, –,	薛珂	<i>y</i> c <i>y</i> v v v	完成
5	纳米材料及制备方	32.0.0		-1 1		—第
	法					一人
	基于饱和脂肪酸和	ZL20211010	中国	朱春雷,	发明专利	合作
4	双响应性荧光分子	8137. 9		薛珂	VC 14 4 .11	完成
6	的纳米温度计			H1. 4		一第
	□ 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					一人
	杯芳烃 GCA 环糊精	CN11222093	中国	郭东升,	发明专利	合作
	CD共组装体及其在	6B	1 14	张涛,潘	次ツ マイI	完成
4	制备药物中的应用	OD		雨辰,王		元
7	147 JEL 27 JW J. BJ J.Z. /17			昨,许心		一人
				一件, 计心		八
	杯芳烃和/或杯芳	CN11387676	中国	薛雷,王	发明专利	人化
4			十四		及奶节剂	合作
4	烃的衍生物在制备	0B		春晓,郭		完成
8	治疗创伤性脑损伤			东升,常		一其
	的药物中的应用			宇轩		他

注: (1) 国内外同内容的专利不得重复统计。(2) 专利: 批准的发明专利,

以证书为准。(3)完成人:必须是示范中心人员(含固定人员和流动人员),多个中心完成人只需填写靠前的一位,排名在类别中体现。(4)类型:其他等同于发明专利的成果,如新药、软件、标准、规范等,在类型栏中标明。(5)类别:分四种,独立完成、合作完成-第一人、合作完成-第二人、合作完成-其他。如果成果全部由示范中心人员完成的则为独立完成。如果成果由示范中心与其他单位合作完成,第一完成人是示范中心人员则为合作完成-第一人;第二完成人是示范中心人员则为合作完成-其他。(以下类同)。

2. 发表论文、专著情况

	文化亿人(\ \		T	1	1	
序号	论文或专著名称	作者	刊物、出 版 社 名 称		类型	类别
1	"RESET" Effect: Random extending sequences enhance the trans-cleavage activity of CRISPR/Cas12a.	An-Na Tang, Jing	al	2022, 94, 8050- 8057	SCI(E)	合完 — 它
2	Accelerating the thermal fading rate of photochromic naphthopyrans by pillar[5]arenebased conjugated macrocycle polymer		Chin. Chem. Lett.	2022, 33, 239- 242	SCI(E)	合完 — 它
3	Controllable synthesis of uniform large-sized spherical covalent organic frameworks for facile sample pretreatment and as naked-eye indicator.		Talanta	2022, 236, 122829	SCI(E)	合完 它
4	Covalent organic polymers with solid-state dual-	Yan Chen, Wei Li, Rong-Zi Gao, Xiao- Han Wang, An-Na	Journal of Materials	2022, 10, 1236-	SCI(E)	合作 完成 —其

	color fluorescence tunable by ultraviolet irradiation.	Tang*, De-Ming Kong*	Chemistr y C	1245.		乜
5	Cyclodextrins- based aerogels: A novel and versatile nanomaterial system	Huacheng Zhang*,	ACS Applied Nano Materials	2022, 5, 13921- 13939	SCI(E)	合完 一它
6	Development of photochromic fused 2H-naphthopyrans with promising thermal fading rates	Taishan Yan, Xi Tu, Zhiqiang Xi, Siyi Du, Jie Han,* Bin Zhao, Zhengjie He		2022, 10, 5542- 5549	SCI(E)	合完 一它
7	Electro-reductive C-H cyanoalkylation of quinoxalin-2(1H)- ones.	丁翎,牛凯凯,,刘 玉秀,汪清民	Chin. Chem. Lett.	2022, 33(8), 4057- 4060	SCI(E)	合完 一它
8	MnO2 nanosheets as a carrier and accelerator for improved live-cell biosensing application of CRISPR/Cas12a.	Ya-Xin Wang, Jing	Chemica 1 Science	2022, 13, 4364- 4371.	SCI(E)	合完 一它
9	pH-Responsive Nanoprobes for Tumour Fluorescence Imaging Based on Spirolactam Rhodamine	沙为洲,王明珠,王蔚,袁直	Materials Chemistr y Frontiers	2022, 6 ,2869 -2879	SCI(E)	独立完成
10	Recent advances in constructing higher-order DNA structures.	Jing Wang, Dong- Xia Wang, Bo Liu, Xiao Jing, Dan-Ye Chen, An-Na Tang, Yun-Xi Cui*, De- Ming Kong*	Chemistr y-An Asian Journal	2022, 17, e20210 1315.	SCI(E)	合完 一 它

11	Recent progresses in pillar[n]arene- based photo- catalysis	Bing Li [†] , Zhizheng Li [†] , Le Zhou, Huacheng Zhang [*] and Jie Han [*]	J. Mater. Sci.	2022, 57: 16175– 16191	SCI(E)	合作 完 一 它
12	SiO2 templates-derived hierarchical porous COFs sample pretreatment tool for non-targeted analysis of chemicals in foods.	Wei Li, Hong-Xin Jiang, Meng-Fan Cui, Rui Wang, An- Na Tang, De-Ming Kong*	Journal of Hazardo us Materials	2022, 432, 128705	SCI(E)	合完 它
13	Synthesis, crystal structure and fungicidal activity of 3,4-dichloro-5-(6-chloro-9-(4-fluorobenzyl)-9H-purin-8-yl)isothiazole	Wang Wei-Bo, Liu Xiao-Yua, Li Zhi- Xinyi, Gao Wei, Lv You, Li Kun, Glukhareva Tatiana V.*, Tang Liang-Fu, Fan Zhi-Jin*	Struct.	2022, 41(2) 220209 1- 220209 7	SCI(E)	合完 一它
14	Two-photon- excited tumor cell fluorescence targeted imaging based on transferrin- functionalized silicon nanoparticles	叶洪丽,何锡文,李文友*,张玉奎	Spectroc him. Acta Part A	2022, 267: 120450	SCI(E)	合完 它
15	UV light-driven asymmetric vinylogous aldol reaction of isatins with 2-alkylbenzophenone s and enantioselective synthesis of 3-hydroxyoxindoles	Shixuan Cao, Jiatian Li, Taisan Yan, Jie Han,* Zhengjie He,*	Org. Chem. Front.	2022, 9, 643- 648	SCI(E)	合完 它

16	A calixarene assembly strategy of combined the antineuroinflammation and drug delivery functions for traumatic brain injury therapy	Yu-Xuan Chang, Xi Chen, Lihuan Bai, Heping Wang, Yu- Chen Pan, Chunqiu	Molecule s	2022, 2 7(9), 2967	SCI(E)	合完 一二
17	"Water-Salt-in- Deep Eutectic Solvent" Method to Optimize Conductivity, Viscosity and Freeze Resistance for Eutectic Electrolytes	Yan Zhang, Yafei Wang, Yangming Zhang, Jingxin Zhao, Yiyang Liu, Ying Guan, Yongjun Zhang	IES & SUPERC	2022, 5(12),e 202200 305	SCI(E)	合完 它
18		陈燕,谭名言,唐安 娜*,孔德明		2022,3 7,2201 061	CSS CI	合作 完成 一 它
19	A bioinspired hierarchical nanoplatform targeting and responding to intracellular pathogens to eradicate parasitic infections	Yunjian Yu, Jie Li, Yufei Zhang, Zhuang Ma, Haonan Sun, Xiaosong Wei, Yayun Bai, Zhongming Wu* and Xinge Zhang*	ials	2022, 280, 121309	SCI(E)	合完 — 一人
20	A CRISPR/Cas12a-responsive dual-aptamer DNA network for specific capture and controllable release of circulating tumor cells	Dong-Xia Wang, Jing Wang*, Ya-Xin Wang ,Jia-Yi Ma, Bo Liu, An-Na Tang, De-Ming Kong*	Chemica 1 Science	2022, 13, 10395- 10405.	SCI(E)	合完 一它

21	A CuS-Based	冯潇月,孙梦杰,王 晓辉,殷畅,王明珠,	ACS	2022, 5, 6901–	SCI(E)	独立完成
	Nanoplatform Catalyzing NO Generation for Tumor Vessel Improvement and Efficient Chemotherapy	玩牌, 放 物, 工 切 球, 王蔚, 袁直	Applied Nano Materials	6910	E)	7G /X,
22	A dimensionally stable lithium alloy based composite electrode for lithium metal batteries	张迎君,王慧敏,柳雪,周畅,李国然,刘 胜*,高学平	Chemica l Engineer ing Journal	2022, 450, 138074	SCI(E)	合完第一人
23	A Facile Way to Construct Sensor Array Library via Supramolecular Ch emistry for Discriminating Complex Systems	Jia-Hong Tian#, Xin-Yue Hu#, Zong-Ying Hu, Han-Wen Tian, Juan-Juan Li, Yu- Chen Pan, Hua-Bin Li& Dong-Sheng Guo*	Nature Commun ications, Springer Nature	2022, 1 3, 4293.	SCI(E)	独立完成
24	A four-component reaction access to nitrile-substituted all-carbon quaternary centers	Xin Hu,† Qiang Bian† Zheng-Lin Wang, Lin-Jie Guo, Yi-Ze Xu, Ge Wang* and Da- Zhen Xu*	Chem.	2022, 87(1), 66–75	SCI(E)	合完 第二人
25	A Heteromultivalent Host-Guest Sensor Array for Cell Recognition and Discrimination	Xin-Yue Hu*,Zong-Ying Hu,Jia-Hong Tian,Lin Shi,Fei Ding,Hua-Bin Li,Dong-Sheng Guo*	Chemica 1 Commun ications	2022, 5 8, 13198- 13201	SCI(E)	独立完成
26	A hypoxia- responsive supramolecular formulation for	Tian-Xing Zhang#, Xiaoxue Hou#, Yong Kong, Fan Yang, Yu-Xin Yue,		2022; 12(1):3 96-409	SCI(E)	合作 完成 —第 一人

	imaging- guided phototherm al therapy	Muhammad Raza Shah, Hua-Bin Li, Fan Huang*, Jianfeng Liu*, Dong-Sheng Guo*	Internati onal			
27	A hypoxia- responsive supramolecular hydrogel based on a deep-cavity azocalix[4]arene	Shun-Yu Yao, Kang Cai*, Dong-sheng Guo*		53, 10,	SCI(E)	合作成 一人
28		王晓辉,冯潇月,孙梦杰,王明珠,王蔚,袁直	Materials Chemistr y Frontiers	2022, 6,1269- 1281	SCI(E)	独立完成
29	A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity	Zhao, Lina Xu, Qiushi Li, Xin-Yue Hu, Dong-Sheng	Angewa ndte Chemie Internati onal Edition	2022, 61(30), e20211 6073	SCI(E)	合完 一它
30	A Polymer Electrolyte with High Cationic Transport Number for Safe and Stable Solid Li- Metal Batteries	Zhao, S. H. Song, Z. X. Xiao, H. Feng, S. L. Gao, G.	ACS Energy Lett.	2022, 7: 4342–4 351	SCI(E)	合完 ——一
31	A Ratiometric Organic Fluorescent Nanogel	Chao Wang#, Xianhao Zhao#, Kaiyu Wu, Shuyi Lv, and Chunlei	Biosenso rs	2022, 12, 702.	SCI(E)	合 完 人 一 它

	Thermometer for Highly Sensitive Temperature Sensing	Zhu*				
32	A receptor- targeting AIE photosensitizer for selective bacterial killing and real- time monitoring of photodynamic therapy outcome	Cheng Wang, Jiaxin Wang, Ke Xue, Ming-hui Xiao, Zhencheng Sun, and Chunlei Zhu*	1	2022, 58, 7058– 7061.	SCI(E)	合完 一它
33	A Smart Photothermal Nanosystem with an Intrinsic Temperature- Control Mechanism for Thermostatic Treatment of Bacterial Infections	Jiaxin Wang, Boyi Hao, Ke Xue, Hao Fu, Ming-hui Xiao, Yongxin Zhang, Linqi Shi, and Chunlei Zhu*	Advance d Materials	2022, 34, 220565 3.	SCI(E)	合完 它
34	A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for High-Performance Lithium—Sulfur Batteries		Adv. Energy Mater.	2022, 220016 0	SCI(E)	合完 — 一
35	Advanced Strategies of Enzyme Activity Regulation for Biomedical Applications	Chen Zihan, Zhao Yu, Liu Yang*	ChemBi oChem	2022, 23(21), e20220 0358	SCI(E)	合完 其
36	Afterglow- Catalysis and Molecular	Zhang Y., Wang Z W., Yang, XT., Zhu, YZ., Wang	Applied Catalysis B:	2022, 305, 121025	SCI(E)	独立完成

	Imprinting: A Promising Union for Elevating Selectivity in Degradation of Antibiotics.	H F.	Environ mental			
37	Alkali ions pre- intercalated 3D crinkled Ti3C2Tx MXene architectures for advanced sodium storage	Zhaoxia Yuan a, Shunlong Ju b, Weiqin Li a, Huinan Guo a, Kai Chen a, Mengyuan Yue a,Xuebin Yu b,*, Yijing Wang a	Chemica 1 Engineer ing Journal	2022, 450, 138453	SCI(E)	合完 一它
Xue bin Yu b,*, Yijin g Wan g a"	Alkaline Soil Degradation and Crop Safety of 5- Substituted Chlorsulfuron Derivatives.	Wu, L., Hua, XW., Li, YH., Wang, Z W., Zhou, S., Li, Z M.		2022, 27, 3318	SCI(E)	合完一它
38	Amine- Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid	Limin Song,Kaiyuan Tan,Yingyue Ye,Baolin Zhu*,Shoumin Zhang,Weiping Huang *	Nanomat	2022, 12: 2414	SCI(E)	合完 它
39	Amphiphilicity- Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient	Xu-Man Chen, Ke-Wei Cao, Hari Krishna Bisoyi, Shu Zhang, Nina Qian, Lingxiang Guo, Dong-Sheng Guo*, Hong Yang*, Quan Li*	Small, Wiley	2022, 18, 42, 220436 0	SCI(E)	合完 — 它

	Artificial Light- Harvesting Systems					
40	An efffcient electrochemical oxidation of C(sp3)-H bond for the synthesis of arylketones	= =	Mol. Catal.	2022, 530, 112633	SSC I	独立完成
41	Anthracene dimer cross-linked, washing- and sterilization-free hydrogel films for multicellular spheroid generation	Qianbing Chen, Lei Cui, Xiaoyong Zhou, Ying Guan, Yongjun Zhang	JOURN AL OF MATERI ALS CHEMIS TRY B	2022, 10(47), 9914- 9922	SCI(E)	合完 一它
42	Antitumor effects of new glycoconjugated Pt-II agents dual- targeting GLUT1 and Pgp proteins	tian jl* etc.,	Dalton Trans.	2022, 51 (42) , 16082	SCI(E)	合完成第一人
43	Are Porous Polymers Practical to Protect Li-Metal Anodes? -Current Strategies and Future Opportunities	S. L. Gao, Z. X. Li, N. Liu, G. L. Liu, H. B. Yang*, P. F. Cao*	Advance d Function al Materials	2022, 32: 220201 3	SCI(E)	合完 — 一
44	Arginine-Rich Polymers with Pore-forming Capability Enable Efficient Intracellular Delivery via Direct Translocation Across Cell Membrane	Kang Ziyao, Liu Qi, Zhang Zhanzhan, Zheng Yadan, Wang Chun, Pan Zheng, Li Qiushi, Liu Yang*, Shi Linqi	Advance d Healthca re Materials	2022, 11(14), 220037 1	SCI(E)	合完 它
45	Artificially	An-An Liu, En-Ze	Natl. Sci.	2022, 9,	SCI(合作

	regulated synthesis of nanocrystals in live cells	Sun, Zhi-Gang Wang, Shu-Lin Liu, Dai-Wen Pang	Rev.	6, nwab16 2	E)	完成 —第 一人
46	Bifunctional Metal—Organic Framework Functionalized by Dimethylamine Cations: Proton Conduction and Iodine Vapor Adsorption	Biao-Biao Hao, Na Qiao, Yi Rong, Chen-Xi Zhang,* and Qing-Lun Wang*	Inorg. Chem.	2022, 61, 9533–9 540	SCI(E)	合完 一二
47	Bimetallic molecularly imprinted nanozyme: Dualmode detection platform	张艳,封雨生,任 兴慧,何锡文,李 文友*,张玉奎	Biosens. Bioelectr on.	2022, 196: 113718	SCI(E)	合完 一它
48	Bioactivity-guided synthesis accelerates the discovery of evodiamine derivatives as potent insecticide candidates	Liu J.B., Shi Y.B., Tian Z.C., Li F.Y., Hao Z.S., Wen W., Zhang L., Wang Y.H.*, Li Y.X.*, Fan Z.J.	Food	2022, 70, 5197–5 206	SCI(E)	合完 一它
49	Biomimetic Chiral Photonic Materials with Tunable Metallic Colorations Prepared from Chiral Melanin-like Nanorods for UV Shielding, Humidity Sensing, and Cosmetics	Ke Xia, Xiaonan Zheng, Yuhan Wang, Weiting Zhong, Ziyue Dong, Zihan Ye, Zhenkun Zhang*	Langmui r	2022, 8(26): 8114– 8124	SCI(E)	合完 ——一
50	Bioreduction of Gold Ions under Greener Conditions	Zongwu Wei*, Xueyan Wei, Chenxi Zhao, Han	ACS Omega	2022, 7(11): 9951–	SCI(E)	合作 完成 —第

	by the Thiol-Modified M13 Bacteriophage and with Hydroxylamine as the Autocatalytic Reducing Agent	Zhang, Zhenkun Zhang*		9957		一人
51	Bridged Carbon Fabric Membrane with Boosted Performance in AC Line-Filtering Capacitors,	Zhang Miao, Dong Kang, Sadaf Saeedi Garakani, Atefeh Khorsand Kheirabad, Ingo Manke, Wu Mingmao, Wang Hong*, Qu Liangti*, Yuan Jiayin*	Advance d Sciences	2022, 210507 2	SCI(E)	合完 一它
52	Bridging D–A type photosensitizers with the azo group to boost intersystem crossing for efficient photodynamic therapy	Wang, Chao Wang, Ke Xue, Ming-hui	Chemica 1 Science	2022, 13, 4139– 4149.	SCI(E)	合完 一它
53	Bringing Inherent Charges into Aggregation- Induced Emission Research	Xiaolin Liu, Chunlei Zhu,* and Ben Zhong Tang*	Accounts of Chemica 1 Research	2022, 55, 197– 208.	SCI(E)	合完成其
54	Calixarene- integrated nano- drug delivery system for tumor- targeted delivery and tracking of anti- cancer drugs in vivo	Sheng Guo, Linqi Shi, Zhanzhan Zhang*& Yang	Nano Research	2022, 15, 7295- 7303.	SCI(E)	合完 一它
55	Calixarene- modified albumin for stoichiometric		Theranos tics, Ivysprin	2022, 1 2, 3747-	SCI(E)	合作 完成 —其

	delivery of multiple drugs in combination- chemotherapy	Xu, Yadan Zheng, Hua-Bin Li, Dong- Sheng Guo, Linqi Shi, Yang Liu*	g Internati onal	3757.		它
56	CASTING: A potent supramolecular strategy to cytosolically deliver STING agonist for cancer immunotherapy and SARS-CoV-2 vaccination	, 2	CCS Chemistr y	2022, DOI:10 .31635/ ccsche m.022. 202201 859	SCI(E)	合完 — 二作成第人
57	Catalytic Effect of Activated Carbon on the Hydrogen Storage Properties of LiAlH4	Zang Lei,Cai Jiaxing,Zhao Lipeng,Liu Jian*	南 尹 报 (自 然 科学版)	2022, 55(4): 59-65	北大核心	合完成第一人
58	Chemical preparation, degradation analysis, computational docking and biological activities of novel sulfonylureas with 2,5-disubstituted groups	Xue-WenSun,Ming-HaoShang,Jia-ShuangZhang,		2022, 188, 105261	SCI(E)	合完 — 它
59	Chemical synthesis, biological activities, and molecular simulations of novel sulfonylurea	Ming- Hao Shang, Kai Zhang, Jia- Shuang Zhang,Con g- Wei Niu, Yong- Hong Li,Fu- Hang Song, Jian-	Chem Biol Drug Des.	2022;1 00:487 -501	SCI(E)	合完 其 它

	compounds bearing ortho-alkoxy substitutions	Guo Wang*				
60	Chemical- biological approaches for the direct regulation of cell-cell aggregation	Jia-Yi Ma, Ya-Xin Wang, Yan Huang, Yi Zhang, Yun-Xi Cui*, De-Ming Kong*	Aggregat e	2022, e166.	SCI(E)	合完 一 它
61	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures	Zhiyuan Zhang, Xinglong Dong, Jun Yin,Zhi-Gang Li,Xue Li,Daliang Zhang,Tingting Pan,Qiong Lei,Xiongli Liu,Yaqiang Xie,Feng Shui,Jinli Li,Mao Yi,Jin Yuan,Zifeng You,Laiyu Zhang,Jianhong Chang,Hongbo Zhang,Wei Li,Qianrong Fang,Baiyan Li*, Xian-He Bu*, Yu Han*	J. Am. Chem. Soc.	2022,1 44(15): 6821– 6829	SCI(E)	合完一一作成第人
62	Chiral assembly and recognition of seven copper (II) coordination polymers from tartaric acid derivative ligands.	Zong-Ying Li, Bin Yuan, Hai-Xian Wang, Tian-Sheng He, Yan-Long Lan, Si-Yu Wang, Li-Na Zhu*, De-Ming Kong*, Xiao-Zeng Li*	Chemistr y-An Asian Journal	2022, 17, e20220 0263.	SCI(E)	合完 一它
63	Cobalt-catalyzed intermolecular hydroamination of unactivated alkenes	Sun P. W., Zhang Z., Wang X. Y., Li L. S., Li Y.X. *, Li Z.M.*	Chin. J. Chem.	2022, 40, 1066- 1072.	SCI(E)	合作 完成 一 它

	using NFSI as nitrogen source.					
64	Dot Solar Cells: Progressive Deposition	Qian Zhao,* Rui Han, Ashley R. Marshall, Shuo Wang, Brian M. Wieliczka, Jian Ni, Jianjun Zhang, Jianyu Yuan, Joseph M. Luther, Abhijit Hazarika,* Guo-Ran Li*	Adv. Mater.	2022, 210788 8	SCI(E)	合完 ——一
65	Combined Photoredox and Carbene Catalysis for the Synthesis of α Amino Ketones from Carboxylic Acids	王皛琛,朱彬兵,刘玉秀,汪清民	ACS Catal.	2022, 12(4), 2522- 2531	SCI(E)	合完 一它
66	NiSe2@C hollow nanospheres	, 0,		2022, 429 (2022) 132394	SCI(E)	合完 一它
67	Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine	Bo Li#, Zhao Wan#, Hanliang Zheng, Shaokun Cai, Han-Wen Tian, Hong Tang, Xin Chu, Gang He, Dong-Sheng Guo, Xiao-Song Xue*, and Gong Chen*	Journal of the America n Chemica 1 Society	2022, 144, 22, 10080– 10090	SCI(E)	合完 它
68	Construction of single-injection vaccine using new time-controlled	Haozheng Wang, Lei Cui, Ying Luo,Xiaoyong Zhou, Rui Liu,	BIOMA TERIAL S ADVAN	2022, 137, 212812	SCI(E)	合作 完成 — 它

	release system	Qianbing Chen, Ying Guan, Yongjun Zhang	CES			
69	Controlled synthesis of open- mouthed epitope- imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein	Xingjia Feng, Siyu Jin, Dongru Li, Guoqi Fu	RSC Advance s, ROYAL SOC CHEMIS TRY	2022, 12, 30, 19561- 19570	SCI(E)	合完 它
70	Corralarenes: A New Family of Conjugated Tubular Hosts	Han Han, Rong Fu, Ruiguo Wang, Chun Tang, Miao- Miao He, Jia-Yin Deng, Dong-Sheng Guo, J. Fraser Stoddart, Kang Cai*	Journal of the America n Chemica l Society	2022, 144, 44, 20351– 20362	SCI(E)	合完 它
71	Coupling an artificial receptor with macrophage membrane for targeted and synergistic treatment of cholestasis	Qiaoxian Huang#, Zong-Ying Hu#, Shuwen Guo, Dong-Sheng Guo*, Ruibing Wang*	lecular Materials	2022, 1 , 100020	SCI(E)	合完 一二二
72	Covalent organic polymers with solid-state dual-color fluorescence tunable by ultraviolet irradiation	Chen Yan, Li Wei, Gao Rong-Zhi, Wang Xiao-Han, Tang An-Na*, Kong De-Ming*	J. Mater. Chem. C	2022, 1 0, 1236- 1245	SCI(E)	合完 它
73	Cu-NPs@C Nanosheets Derived from a	鲍利伟,杨山青,胡同亮*	ChemSu sChem	2022, 15, e20220	SCI(E)	合作 完成 —其

	PVP-assisted 2D Cu-MOF with Renewable Ligand for High-Efficient Selective Hydrogenation of 5- Hydroxymethylfurf ural			0392		它
74	Cyclodextrin- pillar[n]arene hybridized macrocyclic systems	Zhaona Liu, Le Zhou, Huacheng Zhang*, Jie Han*	Org. Biomol. Chem.	2022, 20, 4278– 4288	SCI(E)	合完成 — 它
75	Degradation of 5- Dialkylamino- Substituted Chlorsulfuron Derivatives in Alkaline Soil	Wu, L.,Gu, YC., Li, YH., Meng, F F., Zhou, S., Li, Z M		2022, 27, 1486	SCI(E)	合完 其
76	Design of Acetohydroxyacid Synthase Herbicide-Resistant Germplasm through MB-QSAR and CRISPR/Cas9- Mediated Base- Editing Approaches	Tao We,Xin Wen, Congwei Niu, Sijing An,Dawei Wang,Zhen Xi* and Ning Ning Wang*	J. Agric. Food Chem.	2022, 70, 2817–2 824	SCI(E)	合完 它
77	Design, synthesis and biological activity of diamide compounds based on 3-substituent of the pyrazole ring	Zhang Z., Sun P. W., Zhao J. H., Zhang H. Y., Wang X. Y., Li L. S., Xiong L. X., Yang N., Li Y.X. *, Yuchi Z. G. *, Li Z.M.*	Pest Manage. Sci.,	2022, 78(5), 2022- 33.	SCI(E)	合完 一它
78	Design, Synthesis, Acaricidal Activities, and Structure-Activity	张钰,陈育明,寻曦 炜,陈仕林,刘玉秀, 汪清民	J. Agric. Food Chem.	2022, 70, 13538- 13544	SCI(E)	合完成 — 它

	Relationship Studies of Oxazolines Containing Ether Moieties					
79	Design, synthesis, and evaluation of novel isothiazole-purines as a pyruvate kinase-based fungicidal lead compound.	Wei Gao, Yue Zhang, Rong Ye, Xin Qi, Lei Chen, Xiaoyu Liu, Liangfu Tang, Lai Chen, Hongyu Chen*, and Zhijin Fan*	J. Agric. Food Chem.	2022, 70(4): 1047- 1057.	SCI(E)	合完 一它
80	Design, synthesis, and fungicidal activities of novelethylenediami ne bridged thiazole derivatives containing oxime ether or oxime ester moieties	Xue-Rong Tian Xing-Jie Peng Tong-Tong Zhao Qiang Bian Wei- Guang Zhao,	J Heterocy clic Chem	2022, 59(9), 1491- 1512	SCI(E)	合完 它
81	Design, synthesis, and insecticidal evaluation of novel anthranilic diamides of N-pyridylpyrazole derivatives containing 3-thioethers	Sun P.W., Zhang Z., Zhao J.H., Li L.S., Wang X.Y., Xiong L.X., Yang N., Li Y.X.* *, Li Z.M.*	Heterocy clic	2022, 59, 820– 831.	SCI(E)	合完 它
82	Designable Guest- Molecule Encapsulation in Metal-Organic Frameworks for Proton Conductivity	Feng-Dong Wang, Bin-Cheng Wang, Biao-Biao Hao, Chen-Xi Zhang,*and Qing- Lun Wang*	Chem. Eur. J.	2022, 28, e20210 3732	SCI(E)	合完第一二人
83	Difunctionalization of unactivated	周盼,牛凯凯,宋 红健,刘玉秀,汪清	Green Chem.	2022, 24,	SCI(E)	合作 完成

	olefins via selective electrochemical chlorosulfuration or chlorosulfoxidation	民		5760– 5763		— 文
84	Discovery of (5-(Benzylthio)-4-(3-(trifluoromethyl)) phenyl)-4H-1,2,4- triazol-3-yl) Methanols as Potent Phytoene Desaturase Inhibitors through Virtual Screening and Structure Optimization	Zhang D, Zhou N, Yang LJ, Yu ZL, Ma DJ, Wang DW, Li YH, Liu B, Wang BF, Xu H, Xi Z.	Journal of Agricult ure and Food Chemistr y,	2022, 70: 10144– 10157	SCI(E)	合完 它
85	Discovery of glyantrypine-family alkaloids as novel antiviral and antiphytopathogeni c-fungus agents.	那亚男,于墨,王 凯华,朱彬兵,王 兹稳,刘玉秀,马 德君,汪清民	Pest Manag. Sci.	2022, 78, 982– 990	SCI(E)	合完 — 它
86	DNA nanolantern- mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs.	Ya-Xin Wang, Dong-Xia Wang, Jing Wang, Bo Liu, An-Na Tang, De- Ming Kong*	Talanta	2022, 236, 122846	SCI(E)	合完 — 它
87	DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal.	Qiong Wang, Jing Wang, Yan Huang, Yi Zhang, Yun-Xi Cui*, De-Ming Kong*	Biosenso rs and Bioelectr onics	2022, 197, 113739.	SCI(E)	合完 — 它

88	Drug in drug: A host–guest formulation of azocalixarene with hydroxychloroquin e for synergistic anti-inflammation	a, Xin-Yue Hu, Hua-Bin Li, Wen- Chao Geng, Xianglei Ko	Advance d Materials , Wiley	2022, 34, 32, 220376 5	SCI(E)	独立完成
89	Dual-ligand terbium metal- organic framework for visual ratiometric fluorescence sensing of nitrites in pickles	王慧敏,尹学博,夏 炎	ACS Food Science & Technolo gy	2022,2(12):191 1-1920	SCI(E)	合完 一它
90	Dual-reverse-signal ratiometric fluorescence method for malachite green detection based on multi-mechanism synergistic effect	马子博,张艳,任 兴慧,何锡文,李 文友*,张玉奎*	Spectroc him. Acta Part A	2022, 276: 121196	SCI(E)	合完 它
91	Efficient one-step synthesis of 3- (indol-2- yl)quinoxalin- 2(1H)-ones via electrochemical oxidative cross-dehydrogenative coupling	Hao Zhang, Lishan Hu, Kai Yu*, Lan- Lan Lou*, Shuangxi Liu		2022, 46(17): 8037– 8042	SCI(E)	合完 ——一
92	Electrochemical a-C(sp3)–H/O–H cross-coupling of isochromans and alcohols assisted by benzoic acid	王壮,牛凯凯,刘玉 秀,宋红健,汪清民	Chem. Commun	2022, 58, 10949– 10952	SCI(E)	合完 — 它
93	Enantiomorphic	Kai-Hang Jin, Yue	Angew.	2022,	SCI(合作

	Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission		Chem. Int. Ed.	61, e20220 5317	E)	完 成 一 角 一 人
94	Extremely Stable Sulfuric Acid Covalent Organic Framework for Highly Effective Ammonia Capture	Jinli Li,Yun Xiao,Feng shui,Mao Yi,Zhiyuan Zhang,Xiongli Liu,Laiyu Zhang,Zifeng You,Rufeng Yang,Shiqi Yang, Xian-He Bu,Baiyan Li*	Chin. J. Chem.	2022, 40(20): 2445- 2450	SCI(E)	合完 ——一
95	Fabrication and photoelectrochemic al sensitivity of N, F-TiO2NTs/Ti with 3D structure	Guo-Na Huo,Lu-Lu Ma,Xiao-Tong Liu,Ke-Han Zhou,Zhao-Chen Suo,Fei-Fei Zhang,Bao-Lin Zhu*,Shou-Min Zhang,Wei-Ping Huang*,	Microch emical Journal	2022, 172: 106957	SCI(E)	合完 它
96	Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production	Wang , Shuangxi	Catalysts	2022, 12(2): 211- 222	SCI(E)	合完 ——一作成第人

97	Fabrication of the water-soluble functionalized silicon nanoparticles for biomedical applications	叶洪丽, 贾超, 何 锡文, 李文友*, 张玉奎	J. Mater. Sci.	2022, 57(7): 4738- 4753	SCI(E)	合完 — 它
98	Facile synthesis disposable MOF membrane filter: Growth of NH2-MIL-125 (Ti) on filter paper for fast removal of organophosphorus pesticides in aqueous solution and vegetables	杨畅,闫雯倩,夏炎	Food Chemistr y	2022, 389:13 3056	SCI(E)	独完成
99	Flexible ligand for metal-organic framework with simultaneous largepore and antenna effect emission	张亚如,谢晓铮,夏 炎,尹学博	Chemica 1 Engineer ing Journal	2022, 443:13 6532	SCI(E)	合完 — 它
100	Flexible ligand–Gd dye-encapsulated dual-emission metal–organic framework	张亚如,谢晓铮,夏 炎	Dalton Transacti ons	2022, 51:178 95	SCI(E)	独立完成
101	From solid waste to a high-performance Li3.25Si anode: towards high initial Coulombic efficiency Li–Si alloy electrodes for Li-ion batteries	Y. Y. He, Y. J. Zhang, Z. X. Li, P. F. Cao, H. B. Yang*, S. L. Gao*	New J. Chem.	2022, 46: 15016- 15023	SCI(E)	合完 一一一
102	Glucose- Responsive	Zhang Yanli, Yang Menglin, Wu	ACS Applied	2022, 14(39):	SCI(E)	合作完成

	Nanochaperones Mediate Exendin-4 Delivery for Enhancing Therapeutic Effects	, ,	Materials & Interface s	44211– 44221		— 其 它
103	Gradient Enhancement of Supramolecular Organic Framework for Solubilization of Hydrophobic Molecules by Two Molecular Containers in Water	Li, Shang-Bo Yu, Hui Wang, Dong- Sheng Guo, Dan-	Journal of Organic	2022, 4 2, 7, 2236 - 2242	SCI(E)	合完 它
104	Graphitic carbon nanochambers interweaved porous yolk-shell skeleton for long-lifespan lithium-ion batteries	Huinan Guo, Kai Chen, Weiqin Li, Zhaoxia Yuan, Mengyuan Yue, Yusang Guo, Yaru Jiang, Liang Zhao, Yijing Wang*		2022, 898, 162831	SCI(E)	合完 一它
105		张曼,贾超,庄骥,侯园园,何锡文,李文友*,白刚*,张玉奎*	Appl.	2022, 14(1): 4 17-427	SCI(E)	合完 它
106	Guanidinium- decorated nanostructure for precision sonodynamic- catalytic therapy of MRSA-infected osteomyelitis	Yijie Cheng, Yufei Zhang, Zhe Zhao, Gang Li, Jie Li, Anran Li, Yun Xue, Baolin Zhu*, Zhongming Wu* and Xinge Zhang*	Advance d Materials	2022, 34, 220664 6	SCI(E)	合完 一一一
107	Lactose azocalixarene drug delivery system for	Juan-Juan Li, Yuqing Hu, Bing Hu, Wenbo Wang,	Nature Commun ication	2022, 13, 6279	SCI(E)	合作 完成 —第

108	multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer. HCl-Catalyzed	Zhang* and Dong- Sheng Guo* 牛凯凯,史晓迪,		2022,	SCI(二人合作
	Aerobic Oxidation of Alkylarenes to Carbonyls		sChem	15(2),e 202102 326, 1- 5	E)	完成 —其 它
109	Heterostructure- based 3D- CdS/TiO2 nanotubes/Ti: Photoelectrochemic al performances and interface simulation investigation	Tian,Zhao Yue,Guo-Na Huo,Zhi-Xin Hu,Shou-Min	Ceramics Internati onal	2022, 48(24): 36731- 36738	SCI(E)	合完 — 它
110	Heterostructured Gel Polymer Electrolyte Enabling Long- Cycle Quasi-Solid- State Lithium Metal Batteries	Yang, Minfei Fei, Sheng Liu, Guoran		2022, 7, 42	SCI(E)	合作成第一人
111	Hierarchical Coating Nanoarchitectonics of Halloysite Nanotube with Polydopamine and ZIF-8 for Adsorption of Organic Contaminants	Xianggen Yuan, Zongwu Wei, Zhenkun Zhang, Haiyan Liu*	J. Inorg. Organom et. Poly. Mater.	2022, 32: 3030– 3039	SCI(E)	合完 它
112	Highly water- dispersible hydroxyl	郑瑞娟,夏炎	Analytic a Chimica	2022,1 227:34 0269	SCI(E)	独立完成

	functionalized covalent organic frameworks as matrix for enhanced MALDI-TOF MS identification and quantification of quaternary ammonium salts in water and fruits		Acta			
113	Hydrogen Bonded, Hierarchically Structured Single- Component Chiral Poly(ionic liquid) Porous Membranes: Facile Fabrication and Application in Enantioselective Separation	Wang Binmin, Wang Lei, Zha Zhengtai, Hu Yingyi, Xu Luyao, Wang Hong*	CCS Chemistr y	2022, 4, 2930- 2937	SCI(E)	合完 它
114	Immune modulating nanoparticles depleting tumor- associated macrophages to enhance immune checkpoint blockade therapy	Zheng Chunxiong, Zhao Xinzhi, Wang Ying, Zhao Yu, Zheng Yadan, Zhang Zhanzhan, Liu Qi, Liu Yang*, Shi Linqi	Chemica l Engineer ing Journal	2022, 435(1), 134779	SCI(E)	合完 它
115	Immunoprofiling of Severity and Stage of Bacterial Infectious Diseases by Ultrabright Fluorescent Nanosphere-Based Dyad Test Strips	Juanzu Liu, Leping Lin, Peiyu Yao, Wei Zhao, Jiao Hu, Xue- Hui Shi, Shiwu Zhang, Xiaobo Zhu, Dai-Wen Pang, An-An Liu	Anal. Chem.	2022, 94, 24, 8818- 8826	SCI(E)	合完 一它
116	Improving Insecticidal	Zhenwu Yu; Xiulan Zhang; Jinzhou	J. Agric. Food	2022, 70(31):	SCI(E)	合作 完成

	Activity of Chlorantraniliprole by Replacing the Chloropyridinyl Moiety with a Substituted Cyanophenyl Group	Gao Wei; Lixia Xiong; Na Yang; Yuxin Li;	Chem.	9645		一 文 它
117	In Situ Construction of Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions	邵亚茹,周磊,于雷,李卓飞,李艳婷,李 伟,胡同亮*	ACS Appl. Mater. Inter.	2022, 14, 17195– 17207	SCI(E)	合完 它
118	In Situ Self-Sorting Peptide Assemblies in Living Cells for Simultaneous Organelle Targeting.	Xin Liu, Mingming Li, Juanzu Liu, Yanqiu Song, Binbin Hu, Chunxia Wu, An-An Liu, Hao Zhou, Jiafu Long, Linqi Shi, Zhilin Yu	J. Am. Chem. Soc.	2022, 144, 21, 9312- 9323	SCI(E)	合完 — 它
119	Influence of the Coordinated Transition Metal Ion on Magnetic Relaxation of Lanthanide Based Complexes with Imino Nitroxide Biradical Ligands	Lu Xi,Chaoyi Jin, Hongwei Song,Xiaotong Wang Junfang Xie, Yue Ma,Jinkui Tang,Licun Li	Chem. Eur. J.	2022, 28, e20220 2239	SCI(E)	合完 — 一
120	In-Sequence High- Specificity Dual- Reporter Unlocking of Fluorescent Probe Enables the	Zhuo Ye, Moxuan Ji, Kefeng Wu, Jie Yang, An-An Liu, Wei Sun, Dan Ding, Dingbin Liu	Angew. Chem. Int. Ed.	2022, 61, 29, e20220 4518	SCI(E)	合完 一它

	Precise Identification of Atherosclerotic Plaques					
121	Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid	Xiongli Liu,Changjia Zhu,Jun Yin,Jixin Li,Zhiyuan Zhang,Jinli Li,Feng Shui,Zifeng You,Zhan Shi,Ayman Nafady,Baiyan Li*, Xian-He Bu*,Shengqian Ma*	Nat. Commun	2022, 10(13): 2132	SCI(E)	合完一一一作成第人
122	Iodine-Catalyzed Oxidative Coupling of Indolin-2-ones with Indoles: Synthesis of 3,3- Disubstituted Oxindole Compounds	Ruo-Pu Li, Zheng- Lin Wang, Yun-Hao Zhang, Zhi-Yu Tan, Da-Zhen Xu*	Chemistr ySelect	2022, 7(28), e20220 0558	SCI(E)	独完成
123	Isolation,	Lei Tian,1 Yang Gao,1 Xing-Jie Peng,1 Cheng Zhang,1 Wei- Guang Zhao,1 and Xing- Hai Liu2		2022, 467833 8	SCI(E)	合完一它作成其
124	La2NiO4	葛海伦,王振宇,李	Electroc	2022,	SCI(合作

	Nanoparticles as a Core Host of Sulfur to Enhance Cathode Volumetric Capacity for Lithium–Sulfur Battery	国然,刘胜*,高学平	himica Acta	424, 140670	E)	完第一人
125	Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer	Juan-Juan Li#, Yuqing Hu#, Bing Hu, Wenbo Wang, Haiqi Xu, Xin-Yue Hu, Fei Ding, Hua- Bin Li, Ke-Rang Wang*, Xinge Zhang* and Dong- Sheng Guo*	Nature Commun ications, Springer Nature	2022, 1 3, 6279.	SCI(E)	独立完成
126	Leveraging Pt/Ce1-xLaxO2-δ to elucidate interfacial oxygen vacancy active sites for aerobic oxidation of 5-hydroxymethylfu rfural	Weiping Yang, Haochen Yu, Beibei Wang, Xuemin Wang, Hao Zhang, Da Lei, Lan-Lan Lou*, Kai Yu*, Shuangxi Liu	ACS Appl. Mater. Inter.	2022, 14(33): 37667- 37680	SCI(E)	合完 — 一
127	Li3InCl6-coated LiCoO2 for high- performance all solid-state batteries	Xiu Zheng , En-De Fu, Peng Chen*, Sheng Liu, Guo- Ran Li, Xue-Ping Gao*		2022, 121, 033902	SCI(E)	合完成第一人
128	Light-Assisted Li– O2 Batteries with Lowered Bias Voltages by Redox Mediators	Weiwei Liu; Yuting Yang; Xu Hu; Qinming Zhang; Chengyi Wang; Jinping Wei; Zhaojun Xie*;Zhen Zhou*	Small	2022, 18(27): 220033 4	SCI(E)	合完第一人
129	Lignin-based hydrogen-bonded covalent organic	Zhan-Chao Li, Wei Li*, Dong-Xia Wang, Rui Wang,	ACS Sustaina ble	2022, 10, 10803-	SCI(E)	合作 完成 —其

	polymers as functional "switches" of modified atmosphere packaging membranes for preservation of perishable foods.	An-Na Tang, De- Ming Kong*	Chemistr y & Engineer ing	10815.		内
130	Location effect of triptycene on the photovoltaic performance of carbazole-based dyes	闫茂,朱义州,晏祎 峤,王群慧,尹冠麟, 郑健禺	Journal of Photoche mistry & Photobio logy, A: Chemistr y	2022, 433, 114132	SCI(E)	合完 一二
131	Magnetic Field- Assisted Fast Assembly of Microgel Colloidal Crystals	Yafei Wang, Yan Zhang, Ying Guan, Yongjun Zhang	LANGM UIR	2022, 38(19), 6057- 6065	SCI(E)	合完 一它
132	Manganese-based metal-organic- framework derived hydrophilic cathode with carbon nanotubes introduced for long- life and high- performance aqueous zinc-ion battery	(8)	JOURN AL OF ALLOY S AND COMPO UNDS	2022, 910, 164876	SCI(E)	独完成
133	Manipulating interfacial atomic structure of Pt/Ce1-xYxO2-δ to improve charge transfer capacity and catalytic	Fuyuan Qi, Weiping Yang, Haochen Yu, Lan- Lan Lou*, Shuangxi Liu, Kai Yu*	Appl. Surf. Sci.	2022, 598: 153769	SCI(E)	合完 ——一

	activity in aerobic oxidation of HMF					
134	MOF-Derived Co and Fe Species Loaded on N- Doped Carbon Networks as Efficient Oxygen Electrocatalysts for Zn-Air Batteries	Yuanyuan Xue; Yibo Guo; Qinming Zhang; Zhaojun Xie*; Jinping Wei; Zhen Zhou*	Nano- micro Lett.	2022, 14(1): 162	SCI(E)	合完 一一一
135	MOF-Supporting Binuclear N- Heterocyclic Carbene-Cobalt Catalyst for Efficient Conversion of CO2 to Formamides	Zhenzhen Zhou,Xiao Liu*, Jian-Gong Ma*,Peng Cheng.	ChemSu sChem	2022, 15, e20220 1386	SCI(E)	合完 一它
136	Multicomponent chiral hydrogel fibers with block configurations based on the chiral liquid crystals of cellulose nanocrystals and M13 bacteriophages	Yuhan Wang, Xiaonan Zheng, Weiting Zhong, Zihan Ye, Xinzhi Wang, Ziyue Dong, Zhenkun Zhang*	Poly. Chem.	2022, 13: 5200- 5211	SCI(E)	合完 ——一作成第人
137	Multifunctional AIEgen-based luminescent metal- organic frameworks with coordination- induced emission for chemical sensing	魏伟,张亚如,夏炎, 尹学博	New Journal of Chemistr y	2022,4 6(20):9 641- 9649	SCI(E)	合完 — 它
138	Multifunctional wound dressing for highly efficient treatment of	马腾飞,翟欣昀*, 金梦蝶,黄泳糠,张 萌真,潘浩波,赵晓 丽,杜亚平*	VIEW	2022, 3(6): 202200 45	SCI(E)	合作成第一人

	chronic diabetic wounds					
139	Nanochaperones tailored for insulin delivery to reduce immune clearance and enhance bioavailability of insulin	Zhang Yanli, Li Chang, Wu Xiaohui, Deng Fei, Huang Fan, Zhang Yumin, Liu Jinjian, Gui Han, Ma Rujiang, Shi Linqi	Chemica l Engineer ing Journal	2022, 435(1): 134866	SCI(E)	合完 它
140	Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection	Chai Jingshan, Li Qiushi, Zhao Yu, Liu Yang*	Chemica 1 Research in Chinese Universit ies	2022, 38, 522- 528	SCI(E)	合完 一它
141	N-Fluorobenzamid e-Directed Formal [4+2] Cycloaddition Reaction with Maleic Anhydride: Access to Fluorescent Aminonaphthalic Anhydrides	Tianyu Lu, Boyi Wang, Weixing Chang, Lingyan Liu,* Jing Li*	J. Org. Chem.	2023, 88, 818–82 7	SSC I	独完成
142	NH2NH-MOF: a reaction matrix for the specific determination of small aldehydes by MALDI-MS	郑瑞娟,杨迎晨,夏炎	Microchi mica Acta	2022,1 89(2):5 1	SCI(E)	独立完成
143	NiMo-Based Nanorod Arrays Supported on Ni Foams for Efficient Hydrogen Electrocatalysis	Yan, YF (Yan, Yunfang); Cao, XJ (Cao, Xuejie); Ning, LM (Ning, Liangmin); Lin, F (Lin, Fei); Qin, WZ (Qin, Wenzhuo);	ACS APPLIE D NANO MATERI ALS	2022, 5(6),77 78- 7786	SCI(E)	独立完成

		Liu, X (Liu, Xin);				
		Gu, W (Gu, Wen)				
144	NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries prevention	Yunjian Yu#, Yufei Zhang#, Yijie Cheng, Yuxia Wang, Zeyuan Chen, Haonan Sun, Xiaosong Wei, Zhuang Ma, Jie Li, Yayun Bai, Zhongming Wu* and Xinge Zhang*	Bioactiv e Materials	2022, 13, 269	SCI(E)	合完 — 一
145	NIR-II organic dyes: Get brighter and see clearer	Xiaolin Liu,* Jianhui Liu, and Chunlei Zhu*	Matter	2022, 5, 3583– 3585.	SCI(E)	合完成 — 它
146	Non-invasive and individual-centered monitoring of uric acid for precaution of hyperuricemia via optical supramolecular sensing,	Yaping Zhang, Huijuan Yu, Shiwei Chai, Xin Chai, Luyao Wang, Wen- Chao Geng, Juan- Juan Li, Yu-Xin Yue, Dong-Sheng Guo* and Yuefei Wang*		2022, 9(18), 210446 3	SCI(E)	合完 — 二
147	Novel bimetallic MOF derived N- doped carbon supported Ru nanoparticles for efficient reduction of nitro aromatic compounds and rhodamine B	tian jl* etc.,	New J. Chem.	2022, 46 (35) , 17004	SCI(E)	独立完成
148	Novel Fluorinated Aniline Anthranilic Diamides Improved Insecticidal Activity Targeting the Ryanodine	Jinzhou Ren; Haolin Yuan; Xiaoyu Liu; Zhenwu Yu; Fanfei Meng; Lixia Xiong; Na Yang; Yuxin Li;	J. Agric. Food Chem.	2022, 70(34): 10453- 10465	SCI(E)	合完 其

	Receptor	Zhengming Li; Zhijin Fan				
149	Organo-Soluble Decanoic Acid- Modified Ni-Rich Cathode Material LiNi0.90Co0.07Mn 0.03O2 for Lithium-Ion Batteries	Mingyue Gao, Yangyang Wang, Shaolun Cui, Sheng Liu, Xue-Ping Gao, Guo-Ran Li*	ACS Appl. Mater. Inter.	2022, 14 , 16348	SCI(E)	合完 ————————————————————————————————————
150		薛飞雪,曾健伟, 严泰山,韩杰*, 贺峥杰*		2022, 42, 3805- 3815	SCI(E)	合完 一它
151	Palladium metallaphotoredox- catalyzed 3- acylation of indole derivatives.	王欣谋,于墨,宋红健,刘玉秀,汪清民	Chem. Commun	2022, 58(68), 9492- 9495	SCI(E)	合完 一它
152	Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions	Yan Zhang, Yafei Wang, Ying Guan, Yongjun Zhang	NATUR E COMM UNICAT IONS	2022, 13(1), 6671	SCI(E)	合完 一它
153	Phase transformation induced benzene rings activation in a metal—organic framework to boost sodium storage performance	Yan Zhang, Kai Chen, Huinan Guo, Yike Huang, Weiqin Li, Caiyun Wang*, Yijing Wang*	Chemica 1 Engineer ing Journal	2022, 433, 133508	SCI(E)	合完 一它
154	Photochemical alkynylation of	丁翎,刘玉秀,牛凯凯,汪清民	Chem. Commun	2022, 58,	SCI(E)	合作完成

	hydrosilanes by iron catalysis			10679– 10682		—第 二人
155	Plastic crystal in rubbery matrix for light and safe batteries	S. L. Gao, M. X. Zhang, C. Gainaru, A. P. Sokolov, H. B. Yang, and P. F. Cao*	Matter	2022, 3: 2457– 2460	SCI(E)	合完 一它
156	Polarity-Sensitive Fluorescent Probe for Reflecting the Packing Degree of Bacterial Membrane Lipids	Chao Wang, Jiaxin Wang, Ke Xue, Ming-hui Xiao, Kaiyu Wu, Shuyi Lv, Boyi Hao, and Chunlei Zhu*	Analytic al Chemistr y	2022, 94, 3303– 3312.	SCI(E)	合完成 — 它
157	Polymeric PD-L1 blockade nanoparticles for cancer photothermal- immunotherapy.	Yunjian Yu, Jie Li, Boyi Song, Zhuang Ma, Yufei Zhang, Haonan Sun, Xiaosong Wei, Yayun Bai, Xueguang Lu, Peng Zhang* and Xinge Zhang*	Biomater ials	2022, 280, 121312	SCI(E)	合完 — 一人
158	Polymer- Reinforced Liposomes Amplify Immunogenic Cell Death-Associated Antitumor Immunity for Photodynamic- Immunotherapy	_	Advance d Function al Materials	2022, 32(52), 220971	SCI(E)	合完 它
159	Porphyrin COF and its mechanical pressing-prepared carbon fiber hybrid membrane for ratiometric detection, removal and enrichment of Cd2+.	Wei-Liang Jin, Xuan Ji, Xin-Long Hou, Shi-Yu Ji, Wei Li, Xi Yu, Xiao-Wei Liu, Li-Na Zhu,* Hong-Xin Jiang*, De-Ming Kong*	Journal of Hazardo us Materials	2022, 439, 129574	SCI(E)	合完 一它

160	_ •	王思源,符浩,马家 民,师晓梦,王慧敏, 尹宗友*,张帅,金 梦蝶,钟子蕴,翟欣 昀,杜亚平*	Chem. Sci.	2022,1 3: 12367- 12373	SCI(E)	合完 一它
161	Promoting tumor accumulation of anticancer drugs by hierarchical carrying of exogenous and endogenous vehicles	Zhanzhan Zhang#, Ze-Han Wang, Rong Ma, Meng- Meng Chen, Fei	Small Structure s	2022, 3, 10, 220006 7	SCI(E)	合完 ——一
162	Protocol to modify the surface of nano- Cu2O using facet controlling and MOF shell coating	Haiqiang Luo, Bo Li, Jian-Gong Ma*, and Peng Cheng*		2022, 3, 101792	SCI(E)	合完 人 它
163	Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery	Hao-Jie Li, Kai Xi, Wei Wang, Sheng Liu, Guo-Ran Li *, Xue-Ping Gao	Storage	2022, 45, 1229	SCI(E)	合完 — 一人
164	Raman spectroscop y differ leukemic c ells from their healthy counterparts and screen biomarkers in acute leukemia	Xuelian Cheng, Ha oyue Liang,Qing Li , Jing Wang,Jing Li u,Yun Zhang,Yong xin Ru,Yuan Zhou	SPECTR OCHIMI CA ACTA PART A- MOLEC ULAR AND BIOMO	2022, 281, 121558	SCI(E)	合完 它

			LECUL AR SPECTR OSCOP Y			
165	Rational design of dual-ligand Eu-MOF for ratiometric fluorescence sensing Cu2+ ions in human serum to diagnose Wilson's disease		Analytic a Chimica Acta	2022,1 204 : 339731	SCI(E)	独立完成
166	Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons	杨山青,胡同亮*	Coord. Chem. Rev.	2022, 468, 214628	SCI(E)	合完 一它
167	Selectively regulating+B2:G20 +B2:G20 Lewis acid-base sites in metal-organic frameworks for achieving turn- on/off the catalytic activity in different CO2 reactions	Xue-Rui Tian, Xiao-Lei Jiang, Sheng-Li Hou*, Zhuo-Hao Jiao, Jie Han,* Bin Zhao*	Angew. Chem. Int. Ed.	2022, 61, e20220 0123	SCI(E)	合完 一它
168	Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils	Wang Hui, Li Ang, Yang Menglin, Zhao Yu, Shi Linqi, Ma Rujiang	Science China- Chemistr y	2022, 65(2): 353– 362	SCI(E)	合完 其它
169	Self-assembly containing cucurbit[m]uril-	Zhaona Liu, Zhizheng Li, Bing Li, Le Zhou,	Polymers	2022, 14, 1777	SCI(E)	合作 完成 —其

	pillar[n]arene hybrid macrocycles	Huacheng Zhang,* Jie Han*				它
170	Self-healable, Highly Stretchable, Ionic Conducting Polymer as Efficient Protecting Layer for Stable Lithium-metal Electrode	F. Y. Sun, Z. X. Li, S. L. Gao, Y. Y. He, J. C. Luo, X. Zhao, D. D. Yang, T. Gao, H. B. Yang*, P. F. Cao*	ACS Applied Materials & Interface s	2022, (14): 26014- 26023	SCI(E)	合完 一一一
171	Self-reconstruction of cationic activated Ni-MOFs enhanced the intrinsic activity of electrocatalytic water oxidation	Xuemin Wang, Xixi Wang, Lin Zhao, Hanyu Zhang, Ming Liu, Cui Zhang, Shuangxi Liu	Inorg. Chem. Front.	2022, 9: 179- 185	SCI(E)	合完第一人
172	Separation Technology in the Pharmaceutical Analysis	唐安娜,董襄朝,林深	南开大学出版社	2022.11 出版	外文专著	合作 完成 — 一人
173	Shape-Controlled Syntheses and Redox Activity Differences of Cu2O Particles as an Undergraduate Laboratory Experiment	Limin Song,Yubi Huang,Jianxun Dong,Baolin Zhu,Weiping Huang*	J. Chem. Educ.	2022, 99: 1788–1 793	SCI(E)	合完 一它
174	Significant Enhancement on the Proton Conduction Performance of Composite Membrane by Photoacid Molecules	Shu-Fang Zhou, Guo-Mei Wu, Chen-Xi Zhang,* and Qing-Lun Wang	Adv. Mater. Interface s	2022, 210124 7	SCI(E)	合完 — 一
175	Single-injection	Xiaoyong Zhou,	Acta	2022,	SCI(合作

	COVID-19 subunit vaccine elicits potent immune responses	Haozheng Wang, Ying Luo, Lei Cui, Ying Guan , Yongjun Zhang	Biomater ialia	151, 491- 500	Е)	完成 —其 它
176	Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium Metal Batteries	Z. X. Xiao, B. R. Li, A. Sokolov, M.	ACS Applied Materials & Interface s	2022, 1 4(50): 5 6110- 56119	SCI(E)	合完 一人
177	Slow magnetic relaxation in a Dy3 triangle and a bistriangular Dy6 cluster	Wen Wang, Tao Shang, Juan Wang,Bin-Ling Yao, Li-Cun Li, Yue Ma, *Qing-Lun Wang, Yuan-Zhu Zhang, * Yi-Quan Zhang * and Bin Zhao	Dalton Trans.	2022, 51, 9404– 9411	SCI(E)	合完 — 一人
178	Smart Hydrogen Atoms in Heterocyclic Cations of 1,2,4- Triazolium-Type Poly(ionic liquid)s	Hong*, Sun Jian- ke*, Markus		2022, 55, 3675– 3687	SCI(E)	合完 一它
179	Spatial distribution control of antimicrobial peptides through a novel polymeric carrier for safe and efficient cancer treatment	Kang Ziyao, Wang Chun, Zhang Zhanzhan, Liu Qi, Zheng Yadan, Zhao Yu, Pan Zheng, Li Qiushi, Shi Linqi, Liu Yang*	Advance d Materials	2022, 34(23), 220194 5	SCI(E)	合完 一它
180	Specific Adsorption Reinforced Interface Enabling Stable Lithium Metal Electrode	王宇旸,顾建康,张 渤海,李国然,刘胜 *,高学平	Advance d Function al Materials	2022, 211200 5	SCI(E)	合完 第一一

181	Sponge-supported monolithic materials of porphyrin covalent organic frameworks for selective recognition, convenient removal and extraction of Cd2+	Wei-Liang Jin, Wei Li, Hai-Xian Wang, Xiao-Wei Liu, Hong-Xin Jiang*, Li-Na Zhu,* De- Ming Kong*	Journal of Environ mental Chemica l Engineer ing	2022, 10, 107662	SCI(E)	合完 一它
182	Stapled Liposomes Enhance Cross- Priming of Radio- Immunotherapy	Zhao Yu, Hou Xiaoxue, Chai Jingshan, Zhang Zhanzhan, Xue Xue, Huang Fan*, Liu Jianfeng*, Shi Linqi*, Liu Yang*	Advance d Materials	2022, 34(3), 210716	SCI(E)	合完 一它
183	Study on Assembling Compactness of Amphiphilic Calixarenes by Fluorescence Anisotropy	Han-Wen Tian, Zhe Xu, Hua-Bin Li, Xin-Yue Hu*, and Dong-Sheng Guo*	Supramo lecular Chemistr y	2022, 3 3, 527- 533.	SCI(E)	独立完成
184	Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos	Xin-Yue Hu, Dong- Sheng Guo*	Angewa ndte Chemie Internati onal Edition	2022, 61, 26, e20220 4979	SCI(E)	独立完成
185	Superhigh intrinsic proton conductivity in densely carboxylic covalent organic framework	Jinli Li,Junhua Wang,Feng Shui,Mao Yi,Zhiyuan Zhang, Xiongli Liu,Laiyu Zhang,Zifeng You,Rufeng Yang,Shiqi Yang,Baiyan Li*,Xian-He Bu*	Chin. Chem. Lett.	2022, 101079 17	SCI(E)	合完 ——一

186	Supramolecular heptanuclear Ln— Cu complexes involving nitronyl nitroxide biradicals: structure and magnetic behavior	Lu Xi, Chao-Yi Jin, Hong-Wei Song, Xiao-Tong Wang, Li-Cun Li, Jean- Pascal Sutter	Dalton Transitio n	2022, 51, 6955– 6963	SCI(E)	合完 一一
187	Supramolecular Radiosensitizer Based on Hypoxia- Responsive Macrocycle	Xiaoxue Hou#, Yu-Xuan Chang#, Yu-Xin Yue, Ze-Han Wang, Fei Ding, Zhi-Hao Li, Hua-Bin Li, Yicheng Xu, Xianglei Kong, Fan Huang*, Dong-Sheng Guo* and Jianfeng Liu*	Advance d Science	2022, 9(6), 210434 9	SCI(E)	合完 一二
188	Supramolecular systems prepared by terpyridine-containing pillararenes	Chang Liu,† Le Zhou,† Shuai Cao,† Huacheng Zhang*, Jie Han* and Zhaona Liu*	1	2022, 13, 286- 299	SCI(E)	合完 一它
189	Surface Modification of Nano-Cu2O for Controlling CO2 Electrochemical Reduction to Ethylene and Syngas	Haiqiang Luo, Bo Li,* Jian-Gong Ma, and Peng Cheng*	Angew. Chem. Int. Ed.	2022, 61, e20211 6736	SCI(E)	合完 一它
190	Surface Plasmon- Enhanced Photoelectrochemic al Sensor Based on Au Modified TiO2 Nanotubes	Wanqing Liu,Wei Duan,Liqun Jia,Siyu Wang,Yuan Guo,Guoqing Zhang,Baolin Zhu*,Weiping Huang,Shoumin Zhang *	Nanomat erials	2022, 12: 2058	SCI(E)	合完 它

191	Synthesis and Evaluation of 11- Butyl Matrine Derivatives as Potential Anti- Virus Agents		Molecule s	2022, 27, 7563	SCI(E)	合 完 其
192	Synthesis and evaluation of novel xanthine-acrylamides and xanthine-acrylates as insecticidal agents	Shuyun Zhang, Hang Liu, Na Yang, Lixia Xiong, Baolei Wang*	Pest Manag. Sci.	2022, 78: 2086- 2095	SCI(E)	独立完成
193	Synthesis of carbon dots-based surface protein-imprinted nanoparticles via sandwich-structured template pre-assemble and post-imprinting modification for enhanced fluorescence detection	Siyu Jin,Dongru Li, Xingjia Feng, Guoqi Fu	Microch emical Journal	2022, 180, 107611	SCI(E)	合完一它作成其
194	Synthesis of surface protein-imprinted nanoparticles based on metal coordination and anchored carbon dots for enhanced fluorescence detection	Zhiqiang Liu, Shiting Zhang, Siyu Jin, Xingjia Feng, Yufei Bai, Xiao Han, Guoqi Fu	Talanta	2022, 238, 123070	SCI(E)	合完 它
195	Synthesis, Crystal Structures, and Biological Activity Evaluation of Novel Xanthine Derivatives	Shuyun Zhang, Lei Wang, Hang Liu, Na Yang, Shujing Yu, Baolei Wang*	J. Agric. Food Chem.	2022, 70: 12330- 12340	SCI(E)	独立完成

	Containing a Pyrethroid Moiety					
196	Synthesis, fungicidal activity and SAR of new amino acid derivatives containing substituted 1- (phenylthio)propan -2-amine moiety	Gaoa, Xing-Jie Penga, Cheng	PHOSP HORUS, SULFU R, AND SILICO N AND THE RELATE D ELEME NTS	2022, VOL. 197, NO. 2, 109– 114	SCI(E)	合完一它
197	Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors	Meng, Xue-Wen Hua, Yong-Hong	Pest Manag Sci	2022, 78: 5313– 5324	SCI(E)	合完 它
198	Synthesis, Herbicidal Activity, Crop Safety and Soil Degradation of Pyrimidine- and Triazine- Substituted Chlorsulfuron Derivatives	S., Wang, ZW., Li,	s	2022, 27, 2362	SCI(E)	合完 它
199	The organic sodium salts/reduced graphene oxide composites as sustainable anode for solid-state sodium ion batteries	Weiqin Li , Huinan Guo , Kai Chen , Zhaoxia Yuan , Yafei Liu , Mengyuan Yue , Yusang Guo , Yijing Wang*	Journal of Power Sources	2022, 517, 230722	SCI(E)	合完 一它

200	Therapeutic nanosweepers promote β-amyloid removal from the brain for Alzheimer's disease treatment	Xu Huaibao, Zhao Yu, Qi Yilin, Xue Xue, Liu Yang*	Biomater ials Science	2022, 10(22), 6525- 6534	SCI(E)	合完 一它
201	Towards cost- efficient and scalable fabrication of SbSn/SP@C electrode for sodium-ion batteries	X. Y. Shan, X. T. Li, H. Feng, M. X. Ma, P. F. Cao, D. D. Yang, H. B. Yang*	Commun	2022, 12: 937– 943	SCI(E)	合完 一一一
202	Trifluoromethyl- modified hierarchical nanoporous metal- organic framework nanoparticles for adsorption of fluorine-containing pesticides	杨畅,夏炎	ACS Applied Nano Materials	2022,5(4):5268 -5277	SCI(E)	独完成
203	Tuning the analytical performance of near-infrared fluorescent quantum dots	Wei Zhao, An-An Liu, Zhen-Ya Liu, Dai-Wen Pang		2022, 52, 9, 1492- 1501	北大核心	
204	Two New Photochromic Coordination Compounds with Thiazolothiazole Extended Viologen and Two Different Auxiliary Ligands	Kun-Peng Chen, Wen-Jing Xu, Yue Ma, and Qing-Lun Wang*	Cryst. Growth Des.	2022, 22, 1024–1 031	SCI(E)	独立完成
205	Uniformly Sized Stem Cell	Lei Cui, Ying Luo, Haozheng Wang	ADVAN CED	2022, 9(14),	SCI(E)	合作 完成

	Spheroids for Treatment of Hind Limb Ischemia: Size Effect	Qianbing Chen, Xiaoyong Zhou, Ying Guan, Yongjun zhang	MATERI ALS INTERF ACES	210232 7		—其 它
206	Visible Light-Induced Hydrosilylation of Electron-Deficient Alkenes by Iron Catalysis	丁翎,牛凯凯,刘 玉秀,汪清民	ChemSu sChem	2022, 15(10), e20220 0367, 1-5	SCI(E)	合完 — 它
207	Visible-light- induced Smiles rearrangement without release of SO2: rapid access to alkyl sulfonyl derivatives.	曹云鹏,王欣谋,焦浩然,宋红健,刘玉秀,汪清民		2022, 24, 4789– 4793	SCI(E)	合完 一它
208	从化学三角到测试三角——试论高校测试人员在 科研服务中的作用	杨亚非,夏炎	实验 技术 与管理	2022,3 9(04):5 -8	SCI(E)	独立完成
209	氮掺杂碳包覆 Na3V2(PO4)2F3 钠离子电池正极 材料的制备与性 能	赵易飞,杨振东,李凤,谢召军,周 震*	储能科学 与技术	2022, 11(6): 1883- 1891	北大核心	
210	高效离子液体催 化剂合成及其在 多组分串联反应 中的应用	李若璞,徐一泽, 王政林,徐大振*	大学化学	2022, 37 (6), 210801 1 (1 of 8)	北大核心	独立完成
211	铬元素的前世今 生——第 54 届国 际化学奥林匹克 试题第2题解析	马建功,邱晓航	大学化学	2022, 37(12), 220907	北大核心	合完成第一人
212	关于第 54 届国际 化学奥林匹克试 题 4-9 的表观解离	张思翰,梁驰予,邱 晓航	大学化学	2022,3 7(12),2 210014	北大核心	合作 完成 —第

	常数计算的讨论					一人
213	磺酰氨基氯磺隆 的合成、除草活 性、作物安全性及 其土壤降解研究	武磊,李永红,周莎,李正名,王忠文	农 药 学学报	2022, 24(6),1 377- 1384,	北大核心	合完 一它
214	基于拔尖人才创新能力培养的基础化学实验教学改革研究	韩杰, 邱晓航, 程 鹏	高 等 理科教育	2022,1, 82~87	北大核心	合 完 从 一 人
215	基质辅助激光解析/电离飞行时间质谱(MALDI-TOF MS)在微生物鉴定中的应用	闫雯倩,夏炎	化 学 教 育(中英 文)	2022,4 3(10):7 -14	北大核心	独立完成
216	交叉学科冷冻透 射电镜平台管理 优化与实践	李昂,卢静,张希浩	实 验 室 研 究 字	2022,4 1(7),28 5	北大核心	合作 完成 一人
217	金属有机骨架衍 生氧化物材料作 为 MALDI-TOF MS 基质用于氨基 酸分析	朱禹豪,杨亚非,夏炎	食品工业科技	2022,4 3(15):2 98-306	北大核心	独立完成
218	硫: 古老元素的新征程——第 54 届国际化学奥林匹克试题第4题解析	李姝*,邱晓航,王颖霞,程方益	大学化学	2022, 37(12): 220906 3	北大核心	合完成第一人
219	毛红椿皮的化学 成分及生物活性 研究	杜丽波,李金玉, 张晓,李永红,潘 卫东	广 范 学 り ま ま ま ま ま ま ま ま ま ま ま ま ま	2022,4 0(4): 162- 172	北大核心	合完 一它
220	毛细管电色谱教学中的"科研反哺"	唐安娜*,王恪	化学教育	2022,4 3,101- 106	CSS CI	合完成 — 它
221	燃料电池科学与	牛志强	科学出	2022	中文	独立

	技术		版社		专著	完成
222	热致变色自旋转 换材料的制备及 表征	赵轶臻,杨皓程,叶雨锟,马建功,邱晓航		2022, 37(5), 210910	北大核心	合完成第一人
223	融入思政元素的离子色谱实验教学实践	李琰,刘越,夏炎	实验室科学	2022, 25(4), 122- 125	北大核心	合
224	乙酰羟酸合成酶 突变体对除草剂 阔草清抗性的预测研究	王白帆,何寅武,文 欣,牛聪伟*,席真*	Acta Chim. Sinica	2022, 80, 141- 149	SCI(E)	合完成 一它
225	有机化学实验教学对科研素养的培养——目标导向的研究性实验与创新能力培养	赵卫光,关英	大学化学	2022, 37(0): 220502 4	北大核心	
226	"RESET" Effect: Random extending sequences enhance the trans-cleavage activity of CRISPR/Cas12a.	Jia-Yi Ma, Si-Yuan Wang, Yi-Chen Du, Dong-Xia Wang, An-Na Tang, Jing Wang*, De-Ming Kong*,	Analytic al Chemistr y	2022, 94, 8050- 8057	SCI(E)	合完 — 它

注: (1)论文、专著均限于教学研究、学术期刊论文或专著,一般文献综述、一般教材及会议论文不在此填报。请将有示范中心人员(含固定人员和流动人员)署名的论文、专著依次以国外刊物、国内重要刊物,外文专著、中文专著为序分别填报。(2)类型: SCI(E)收录论文、SSCI收录论文、A&HCL收录论文、EI Compendex收录论文、北京大学中文核心期刊要目收录论文、南京大学中文社会科学引文索引期刊收录论文(CSSCI)、中国科学院中国科学引文数据库期刊收录论文(CSCD)、外文专著、中文专著;国际会议论文集论文不予统计,可对国内发行的英文版学术期刊论文进行填报,但不得与中文版期刊同内容的论文重复。(3)外文专著:正式出版的学术著作。(4)中文专著:正式出版的学术著作,不包括译著、实验室年报、论文集等。(5)作者:多个作者只需填写中心成员靠前的一位,排名在类别中体现。

3. 仪器设备的研制和改装情况

序号	仪器设 备名称	自制或改装	开发的功能和用途 (限 100 字以内)	研究成果 (限 100 字以 内)	推广和应用的高校
1	动 反	自制	"裤型"。 一个文章, 一个一 一个一个 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一	动瓶已于实修糖化《皂等的为配实物验改酸反乙化相电义学套际理教了催应酸反关子。反装应化学《化》乙应实讲应置用学,蔗转和酯》验	南开大学

注: (1) 自制:实验室自行研制的仪器设备。(2) 改装:对购置的仪器设备进行改装,赋予其新的功能和用途。(3) 研究成果:用新研制或改装的仪器设备进行研究的创新性成果,列举1-2项。

4. 其他成果情况

名称	数量
国内会议论文数	0 篇
国际会议论文数	0 篇
国内一般刊物发表论文数	0 篇
省部委奖数	7 项
其他奖数	9 项

注: 国内一般刊物: 除"(二)2"以外的其他国内刊物, 只填汇总数量。

五、信息化建设、开放运行和示范辐射情况

(一) 信息化建设情况

中心网址	http://cec.nankai.edu.cn
中心网址年度访问总量	23796 人次
虚拟仿真实验教学项目	3 项

(二) 开放运行和示范辐射情况

1. 参加示范中心联席会活动情况

所在示范中心联席会学科组名称	化学组	
参加活动的人次数	3 人次	

2. 承办大型会议情况

序 号	会议名称	主办单位 名称	会议主 席	参加人 数	时间	类型
1	全国大学生化学 实验创新设计大 赛交流会	化	邱晓航	70	2022- 03-01	区域性
2	大学化学实验操 作规范研讨会	化学国家 级实示范南 心 大学)	邱晓航	5300	2022- 10-08	区域 性

注:主办或协办由主管部门、一级学会或示范中心联席会批准的会议。请按全球性、区域性、双边性、全国性等排序,并在类型栏中标明。

3. 参加大型会议情况

序号	大会报告名称	报告人	会议名称	时间	地点
1	高校课程思政中	邱晓航	南开大学进修	2022-04-	线上
	的"显"与		教师工作坊	06	
	"隐"				
2	遇见化学	邱晓航	福建省三明市	2022-04-	线上
			沙县区名师分	29	
			享会		
3	思政元素在化学	邱晓航	教育部化学实	2022-11-	钉钉会议
	类通识课程中的		验虚拟教研室	21	
	表达方式		化学类通识课		
			程课程思政建		
			设研讨		
4	基础有机化学实	韩杰	大学化学实验	2022-10-	线上会议
	验——规范操作		操作规范研讨	08	
	与创新能力培养		会		

注: 大会报告: 指特邀报告。

4. 承办竞赛情况

序号	竞赛名称	竞赛 级别	参赛 人数	负责人	职称	起止时间	总经费 (万元)
	第二届化学实	校级	24	邱晓航	教授	2022-11-1	0. 5
1	验产品展示大					至 2022-12-	
	赛					15	

注: 竞赛级别按国家级、省级、校级设立排序。

5. 开展科普活动情况

序 号	活动开展时 间	参加人 数	活动报道网址
1	2022-04-29	300	遇见化学 https://cec.nankai.edu.cn/info/1069/1606.htm
2	2022-08-24	40	少年工匠——惊奇化学之旅 https://cec.nankai.edu.cn/info/1069/1633.htm

6. 承办培训情况

序号	培训项目名称	培训人数	负责人	职称	起止时间	总经费 (万 元)
1						

注:培训项目以正式文件为准,培训人数以签到表为准。

(三)安全工作情况

安全教育	培训情况	800 人次			
是否发生安全责任事故					
伤亡人数	汝(人)				
伤	亡	木 友主			
0	0	V			

注:安全责任事故以所在高校发布的安全责任事故通报文件为准。如未发生安全责任事故,请在其下方表格打钩。如发生安全责任事故,请说明伤亡人数。